Details

Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants


Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants

Volume I
Forestry Sciences, Band 84 2nd ed. 2018

von: Shri Mohan Jain, Pramod Gupta

CHF 118.00

Verlag: Springer
Format: PDF
Veröffentl.: 11.06.2018
ISBN/EAN: 9783319894836
Sprache: englisch

Dieses eBook enthält ein Wasserzeichen.

Beschreibungen

World population is increasing at an alarming rate and this has resulted in increasing tremendously the demand for tree products such as wood for construction materials, fuel and paper, fruits, oils and medicines etc. This has put immense pressure on the world’s supplies of trees and raw material to industry and will continue to do so as long as human population continues to grow. Also, the quality of human diet, especially nutritional components, is adversely affected due to limited genetic improvement of most of fruit trees. Thus there is an immediate need to increase productivity of trees. Improvement has been made through conventional breeding methods, however, conventional breeding is very slow due to long life cycle of trees. A basic strategy in tree improvement is to capture genetic gain through clonal propagation. Clonal propagation via organogenesis is being used for the production of selected elite individual trees. However, the methods are labour intensive, costly, and produce low volumes. Genetic gain can now be captured through somatic embryogenesis. Formation of embryos from somatic cells by a process resembling zygotic embryogenesis is one of the most important features of plants. In 1958, Reinert in Germany and Steward in USA independently reported somatic embryogenesis in carrot cultures. Since then, tremendous progress in somatic embryogenesis of woody and non-woody plants has taken place. It offers a potentially large-scale propagation system for superior clones.
Section A.- Slash Pine (Pinus elliottii Engelm.).- Somatic Embryogenesis and Genetic Transformation in Pinus radiata.- Douglas - Fir (Pseudotsuga menziesii).- Omorika Spruce (Picea omorika).- Somatic Embryogenesis in Picea glauca.- Protocol of Somatic Embryogenesis: Black Spruce (Picea mariana (Mill.) B.S.P.).- Sitka Spruce (Picea sitchensis).- Protocol of Somatic Embryogenesis of Pinus nigra Arn..- Loblolly Pine (Pinus taeda).- Somatic Embryogenesis in Maritime Pine (Pinus pinaster Ait.).- Somatic Embryogenesis in Pinus patula.- Somatic Embryogenesis in Norway Spruce.- Section B.- Cashew (Anacardium occidentale L.).- Somatic Embryogenesis Protocol: Coffee (Coffea arabica L. and C. canephora P.).- Protocols for Somatic Embryogenesis and Plantlet Formation from Three Explants in Tea (Camellia sinensis (l.) o. kuntze).- Protocol of Somatic Embryogenesis from Citrus spp. Anther Culture.- Integrated System for Propagation of Theobroma cacao L..- Mango (Mangifera indica L.).- Somatic Embryogenesis Injackfruit (Artocarpus heterophyllus Lam.).- Somatic Embryogenesis in Indian Olive (Elaeocarpus robustus L).- Rescue of Endangered Palms by in vitro Methods: The Case of ‘Bottle Palm’.- Somatic Embryogenesis in American Grapes (Vitis x labruscana L.H. Bailey).- Pistachio (Pistacia vera L.).- Grape (Vitis vinifera L.).- Date Palm Phoenix dactylifera L..- Somatic Embryogenesis Protocol: Citrus.- Olive (Olea europaea L.).- Section C.- Protocol of Somatic Embryogenesis: Dalbergia sissoo Roxb. (Sissoo).- Protocol of Somatic Embryogenesis: Pedunculate Oak (Quercus robur L.) and Sessile Oak (Quercus petraea /Matt./ Liebl.).- Protocol of Somatic Embryogenesis: Tamarillo (Cyphomandra betacea (Cav.) Sendtn.).- Protocol of Somatic Embryogenesis: European Chestnut (Castanea sativa Mill.).- Protocol of Somatic Embryogenesis in Acacia arabica (Lamk.) Willd..- Protocol for Hazelnut Somatic Embryogenesis.- Protocol of Somatic Embryogenesis: Ocotea catharinensis Mez. (Lauraceae).- Cork Oak, Quercus suber L..- Sawara Cypress Chamaecyparis pisifera Sieb. et Zucc..- Protocol of Somatic Embryogenesis: Holm Oak (Quercus ilex L.).- Protocols for Somatic Embryogenesis of Hybrid Firs.- Somatic Embryogenesis in Sandalwood.- Echinacea purpurea L.: Somatic Embryogenesis from Leaf Explant.- Section D.- Histological Techniques.- Bioencapsulation of Somatic Embryos in Woody Plants.- Protoplast Isolation and Culture of Woody Plants.- Cryopreservation of Embryonal Cells.- Double Staining Technology for Distinguishing Embryogenic Cultures.- Thin Cell Layer Sectioning for Inducing Somatic Embryogenesis in Woody Plants.
Prof. Dr.&nbsp;Shri Mohan Jain&nbsp;is an Indian-born plant&nbsp;biotechnology&nbsp;scientist. He worked several years for the&nbsp;International Atomic Energy Agency&nbsp;in Vienna. He has done research on&nbsp;genetically modified food, mutation breeding, ornamental plants, date palm, and tropical fruits, such as banana.<p>Prof. Jain completed his bachelor's degree at the&nbsp;Chaudhary Charan Singh Haryana Agricultural University&nbsp;in Hisar, Haryana, India (1966–1970). After that he continued his studies to receive a Master of Science from the Genetics department at the&nbsp;G.B. Pant University of Agriculture and Technology&nbsp;in Pantnagar, Nainital, India (1970–1972). In 1972 he started his studies in Master of Philosophy in&nbsp;Jawaharlal Nehru University&nbsp;in New Delhi, India and finally completed his studies with a PhD from the same university in 1978.<br><br>Pramod Gupta has been involved in the science of tree cloning since he chose forestry as his career at the ageof 20. He has a PhD and 30-years of work experience with one of the global leaders in forestry, Weyerhaeuser. Pramod Gupta developed the first cloning lab for Weyerhaeuser, built a scientific team, consulted with forest managers world-wide, studied optimal growing conditions, presented scientific papers, and earned multiple patents.&nbsp;<br></p>
<p>Earlier, we edited a well received series on "Somatic embryogenesis in woody trees", volumes 1 to 6. These volumes provided readers extensive reviews on somatic embryogenesis of important angiosperm and gymnosperm tree species; an excellent source of information for newcomers or those already engaged in research. However, these book volumes did not cover stepwise "detailed protocols" for inducing somatic embryogenesis.&nbsp;This book contains 2 volumes describing protocols for somatic embryogenesis of woody plants.&nbsp;</p>

<p>Volume 1 includes a total of 23 book chapters covering&nbsp;Abies&nbsp;sps, Picea&nbsp;sps, Pinus&nbsp;sps., Eucalyptus globulus , &nbsp;Quercus&nbsp;sps., Larix x eurolepis,&nbsp;&nbsp;Podocarpus lamberti, manufactured seeds, SE. Fludics system, cryopreservation, Anther culture.</p>

<p>Volume 2 deals with 27 book chapters on guava, olive, coffee, microspore embryogenesis in almond, cacao, black cohosh, tamarillo, coconut, cherry, date palm, oil palm, roughlemon, alpataco, hybrid aspen,&nbsp;&nbsp;rose, grapevine, Turkish cyclamen sps,&nbsp;Gomortega keule, tea, Acai palm, Passiflora, tree-fern somatic embryo cryopreservation, tamarillo cryopreservation, avocado, haploid embryogenesis in tea, neem.&nbsp;</p>

<p>The book provides&nbsp;stepwise protocols for somatic embryogenesis of a range of selected woody plants in order to assist researchers to initiate somatic embryogenic cultures without too much alterations in protocols. Each chapter provides information on initiation and maintenance of embryogenic cultures; somatic embryo development, maturation, and germination; acclimitization and field transfer of somatic seedlings.&nbsp;</p>
Stepwise protocols for somatic embryogenesis of important woody plants Guide for researchers to initiate somatic embryogenic cultures without too much alteration

Diese Produkte könnten Sie auch interessieren:

The Air Spora
The Air Spora
von: Maureen E. Lacey, Jonathan S. West
PDF ebook
CHF 236.00
Vegetables I
Vegetables I
von: Jaime Prohens-Tomás, Fernando Nuez
PDF ebook
CHF 330.50
Handbook of Poisonous and Injurious Plants
Handbook of Poisonous and Injurious Plants
von: Lewis S. Nelson, L.R. Goldfrank, Andrew Weil, Richard D. Shih, Michael J. Balick
PDF ebook
CHF 142.00