Details

The Sol-Gel Handbook


The Sol-Gel Handbook

Synthesis, Characterization, and Applications
1. Aufl.

von: David Levy, Marcos Zayat

CHF 552.00

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 03.09.2015
ISBN/EAN: 9783527670833
Sprache: englisch
Anzahl Seiten: 1616

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

This comprehensive three-volume handbook brings together a review of the current state together with the latest developments in sol-gel technology to put forward new ideas. <br> The first volume, dedicated to synthesis and shaping, gives an in-depth overview of the wet-chemical processes that constitute the core of the sol-gel method and presents the various pathways for the successful synthesis of inorganic and hybrid organic-inorganic materials, bio- and bio-inspired materials, powders, particles and fibers as well as sol-gel derived thin films, coatings and surfaces. <br> The second volume deals with the mechanical, optical, electrical and magnetic properties of sol-gel derived materials and the methods for their characterization such as diffraction methods and nuclear magnetic resonance, infrared and Raman spectroscopies. <br> The third volume concentrates on the various applications in the fields of membrane science, catalysis, energy research, biomaterials science, biomedicine, photonics and electronics.<br>
<p>Preface XXI</p> <p>List of Contributors XXIII</p> <p>Volume One: Synthesis and Processing</p> <p><b>Part One Sol–Gel Chemistry and Methods 1</b></p> <p><b>1 Chemistry and Fundamentals of the Sol–Gel Process 3</b><br /><i>Ulrich Schubert</i></p> <p>1.1 Introduction 3</p> <p>1.2 Hydrolysis and Condensation Reactions 4</p> <p>1.2.1 Silica-Based Materials 4</p> <p>1.2.1.1 Precursor(s) 9</p> <p>1.2.1.2 Catalyst (pH) 9</p> <p>1.2.1.3 Alkoxo Group/H2O Ratio (Rw) 9</p> <p>1.2.1.4 Solvent 10</p> <p>1.2.1.5 Electrolytes 10</p> <p>1.2.2 Metal Oxide-Based Materials 11</p> <p>1.3 Sol–Gel Transition (Gelation) 17</p> <p>1.3.1 Hydrolytic Sol–Gel Processes 17</p> <p>1.3.2 Nonhydrolytic Sol–Gel Processes 22</p> <p>1.3.3 Inorganic–Organic Hybrid Materials 22</p> <p>1.4 Aging and Drying 24</p> <p>1.5 Postsynthesis Processing 26</p> <p>1.6 Concluding Remarks 26</p> <p>References 27</p> <p><b>2 Nonhydrolytic Sol–Gel Methods 29</b><br /><i>Rupali Deshmukh and Markus Niederberger</i></p> <p>2.1 Introduction 29</p> <p>2.2 Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles 31</p> <p>2.2.1 Surfactant-Assisted Synthesis 31</p> <p>2.2.2 Solvent-Controlled Synthesis 33</p> <p>2.2.2.1 Benzyl Alcohol Route 33</p> <p>2.2.2.2 tert-Butyl Alcohol Route 37</p> <p>2.2.2.3 Ether Route 37</p> <p>2.2.2.4 Acetophenone Route 38</p> <p>2.2.2.5 Carboxylic Acid Route 39</p> <p>2.2.2.6 Benzylamine Route 39</p> <p>2.2.3 Microwave-Assisted Synthesis 40</p> <p>2.3 Nonaqueous Sol–Gel Synthesis beyond Metal Oxides 43</p> <p>2.3.1 Composites 43</p> <p>2.3.2 Organic–Inorganic Hybrid Materials 44</p> <p>2.3.3 Metal Sulfides 46</p> <p>2.3.4 Metals 47</p> <p>2.4 Chemical Reaction and Crystallization Mechanisms 48</p> <p>2.4.1 Introduction 48</p> <p>2.4.2 Overview of the Main Chemical Reactions 49</p> <p>2.4.3 Classical and Nonclassical Crystallization Mechanisms 51</p> <p>2.4.4 Selected Examples 51</p> <p>2.5 Assembly and Processing 56</p> <p>2.5.1 Introduction 56</p> <p>2.5.2 Nanoparticle Arrays and Superlattices 57</p> <p>2.5.3 Oriented Attachment and Mesocrystals 59</p> <p>2.5.4 Films 60</p> <p>2.6 Summary and Outlook 63</p> <p>References 63</p> <p><b>3 Integrative Sol–Gel Chemistry 71</b><br /><i>M. Depardieu, N. Kinadjian, D. Portehault, R. Backov, and Clément Sanchez</i></p> <p>3.1 Introduction 71</p> <p>3.2 Design of 0D Structures 72</p> <p>3.2.1 Aerosol Processing 72</p> <p>3.2.2 Capsules 75</p> <p>3.2.2.1 Simple Emulsions Preparation 76</p> <p>3.2.2.2 Mineralization of the Wax Dispersion 76</p> <p>3.2.2.3 Temperature-Triggered Release 77</p> <p>3.2.2.4 Introducing a Hydrophilic Compartment 79</p> <p>3.2.2.5 <a href="mailto:Water@Wax@Water">Water@Wax@Water</a> Emulsion Formulation 80</p> <p>3.2.2.6 <a href="mailto:Water@Wax@Water">Water@Wax@Water</a> Emulsion Mineralization 80</p> <p>3.2.2.7 Temperature-Triggered Release 81</p> <p>3.2.2.8 <a href="mailto:Wax@Water@Oil">Wax@Water@Oil</a> Emulsion Formulation 83</p> <p>3.2.2.9 <a href="mailto:Wax@Water@Oil">Wax@Water@Oil</a> Emulsion Mineralization 84</p> <p>3.2.2.10 Temperature-Triggered Release 85</p> <p>3.3 Design of 1D Macroscopic Structures 88</p> <p>3.3.1 Electrospinning 89</p> <p>3.3.1.1 A First Case: TiO2 Fibers for Dye-Sensitized Solar Cells 89</p> <p>3.3.1.2 Coupling Sol–Gel Reactions and Electrospinning 90</p> <p>3.3.2 Extrusion 93</p> <p>3.3.2.1 V2O5 Fibers as Alcohol Sensor 94</p> <p>3.3.2.2 Composite Fibers Prepared with the Help of Polymer Dehydration/Reticulation 96</p> <p>3.4 Design of Extended 2D Structures 99</p> <p>3.5 Design of Extended 3D Structures 99</p> <p>3.5.1 Foams 99</p> <p>3.5.1.1 Silica Foams: Si-(HIPE) 101</p> <p>3.5.1.2 <a href="mailto:Eu3+@Organo-Si-(HIPE">Eu3+@Organo-Si-(HIPE</a>): Photonic Properties 101</p> <p>3.5.1.3 <a href="mailto:Pd@Organo-Si-(HIPE">Pd@Organo-Si-(HIPE</a>): Cycling Heck Catalysis Reactions 103</p> <p>3.5.1.4 <a href="mailto:Enzyme@Organo-Si-(HIPE">Enzyme@Organo-Si-(HIPE</a>): High Efficiency Biocatalysts 104</p> <p>3.5.1.5 Si-(HIPE) as Hard Template to Carbonaceous Foams and Applications 106</p> <p>3.5.1.6 Carbon-(HIPE) as Li Ion Negative Electrodes 107</p> <p>3.5.1.7 <a href="mailto:LiBH4@Carbon-(HIPE">LiBH4@Carbon-(HIPE</a>) for Hydrogen Storage and Release 107</p> <p>3.5.2 Aerogels 112</p> <p>3.5.3 Dense Nanostructured Monoliths 112</p> <p>3.6 Conclusions 113</p> <p>References 115</p> <p><b>4 Synthetic Self-Assembly Strategies and Methods 121</b><br /><i>Alexandra Zamboulis, Olivier Dautel, and Joël J.E. Moreau</i></p> <p>4.1 Introduction 121</p> <p>4.2 Templated Synthesis of Inorganic Materials 122</p> <p>4.2.1 Self-Assembly of Mesoporous Silicas 123</p> <p>4.2.2 Hydrothermal Rearrangement and Postsynthesis Treatment 125</p> <p>4.2.3 Self-Assembly of Thin Films 126</p> <p>4.2.4 Self-Assembly of Functionalized Mesoporous Silicas 127</p> <p>4.3 Self-Assembled Organosilicas 128</p> <p>4.3.1 Control of the Pore Structure: Templated Synthesis of Mesoporous Bridged Silsesquioxanes 129</p> <p>4.3.2 Self-Organized Organosilicas 132</p> <p>4.3.3 Self-Assembly Synthetic Strategies for Organosilicas with Optical Properties 139</p> <p>4.3.3.1 Toward an H-Aggregation/Card Pack Stacking 141</p> <p>4.3.3.2 From a J- to an H-Aggregation 149</p> <p>4.3.3.3 Transcription of the J-Aggregation from the Precursor to the Material 153</p> <p>4.4 Conclusions 154</p> <p>References 154</p> <p><b>5 Processing of Sol–Gel Films from a Top-Down Route 165</b><br /><i>Plinio Innocenzi and Luca Malfatti</i></p> <p>5.1 Introduction 165</p> <p>5.2 Top-Down Processing by UV Photoirradiation 167</p> <p>5.2.1 UV Curing of Oxides 167</p> <p>5.2.2 UV Curing of Hybrid Sol–Gel Films 169</p> <p>5.2.3 UV Photoirradiation of Mesoporous Films 170</p> <p>5.2.4 Nanocomposite So–Gel Films by UV Photoirradiation 173</p> <p>5.3 Laser Irradiation and Writing 174</p> <p>5.3.1 Thermal-Induced Effects 174</p> <p>5.3.2 Laser-Induced Microfabrication 175</p> <p>5.3.3 Nanofabrication by Two- or Multiphoton Absorption 177</p> <p>5.4 Electron Beam Lithography 178</p> <p>5.5 Top-Down Processing by Hard X-Rays 181</p> <p>5.6 Soft X-Ray Lithography 184</p> <p>References 186</p> <p><b>6 Sol–Gel Precursors 195</b><br /><i>Vadim G. Kessler</i></p> <p>6.1 Introduction 195</p> <p>6.2 Simple Silicon Alkoxides 196</p> <p>6.3 Functional and Mixed Ligand Silicon Alkoxides for More Facile Hydrolysis 197</p> <p>6.4 Functional Silicon Alkoxides: Precursors of Hybrid Materials 198</p> <p>6.5 Simple Metal Alkoxides 200</p> <p>6.5.1 Commercially Available Simple Metal Alkoxide 202</p> <p>6.5.2 Customary Synthesis of Metal Alkoxide Precursors 209</p> <p>6.5.2.1 Interaction of Metals with Alcohols 209</p> <p>6.5.2.2 Alcoholysis of Complexes Derived from Volatile Acids Weaker Than Alcohols 209</p> <p>6.5.2.3 Basic Alcoholysis of Metal Halides: Metathesis Reaction 210</p> <p>6.5.2.4 Alcoholysis of Metal Oxides 210</p> <p>6.5.2.5 Electrochemical Oxidation of Metals in Alcohols 211</p> <p>6.5.2.6 Alcohol Interchange Reaction 211</p> <p>6.6 Functional and Mixed Ligand Metal Alkoxides for More Facile Hydrolysis and Stabilization of Resulting Colloids 212</p> <p>6.7 Precursor and Solvent Choice for Nonhydrolytic Sol–Gel Processes 213</p> <p>6.8 Synthesis of Complex Materials: Single-Source Precursor Approach 214</p> <p>6.9 Sol–Gel Precursors for Special Applications: Biomedical and Luminescent 215</p> <p>Abbreviations 216</p> <p>References 216</p> <p><b>Part Two Sol–Gel Materials 225</b></p> <p><b>7 Nanoparticles and Composites 227</b><br /><i>Guido Kickelbick</i></p> <p>7.1 Introduction 227</p> <p>7.2 Aqueous Sol–Gel Process 228</p> <p>7.2.1 Silica Nanoparticles 228</p> <p>7.2.1.1 Properties of Silica Nanoparticles 230</p> <p>7.2.2 Metal Oxides 231</p> <p>7.3 Nonaqueous Sol–Gel Process 232</p> <p>7.3.1 Metal Oxides 232</p> <p>7.4 Surface Functionalization of Nanoparticles 234</p> <p>7.5 Nanocomposites 236</p> <p>7.5.1 Dispersion of Silica Nanoparticles in Polymer Matrices 237</p> <p>7.5.2 In Situ Production of Silica Particles in a Polymer Matrix 237</p> <p>7.5.3 Melt Production of Silica Particles in a Polymer Matrix 238</p> <p>7.5.4 Properties of Nanoparticle Polymer Nanocomposites 238</p> <p>7.6 Conclusions 239</p> <p>References 239</p> <p><b>8 Oxide Powders and Ceramics 245</b><br /><i>Maria Zaharescu and Luminita Predoana</i></p> <p>8.1 Oxide Powders Obtained by Sol–Gel Methods 245</p> <p>8.2 Ceramics from Sol–Gel Oxide Powders 248</p> <p>8.3 Pure and Doped Single Oxide Ceramics 249</p> <p>8.3.1 Nanocrystalline Yttria 249</p> <p>8.3.2 Gd-Doped Ceria 249</p> <p>8.4 Multicomponent Ceramics 250</p> <p>8.4.1 Zirconium Titanate 250</p> <p>8.4.2 Lead Titanate 251</p> <p>8.4.3 Zr-Doped PbTiO3 251</p> <p>8.4.4 Nb-Doped PZT 252</p> <p>8.4.5 W-Doped PZT 252</p> <p>8.4.6 Ca-Doped PbTiO3 253</p> <p>8.4.7 Barium Titanate 255</p> <p>8.4.8 (Er, Yb)-Doped BaTiO3 256</p> <p>8.4.9 Barium Strontium Titanate 256</p> <p>8.4.10 Co-Doped Barium Strontium Titanate 257</p> <p>8.4.11 Mg-Doped Barium Strontium Titanate 257</p> <p>8.4.12 Magnesium Titanate 257</p> <p>8.4.13 B-Doped MgTiO3 258</p> <p>8.4.14 Calcium Titanate 258</p> <p>8.4.15 CaTiO3–(Sm, Nd)AlO3 Solid Solution 259</p> <p>8.4.16 (Co, Cu)-Doped Calcium Titanate 259</p> <p>8.4.17 (Na, K)-Doped Bismuth Titanate 260</p> <p>8.4.18 Mg-Doped Barium Tantalate 261</p> <p>8.4.19 Lead-Free Ba(Fe0.5Nb0.5)O3 261</p> <p>8.4.20 B-Doped Mg4Nb2O9 261</p> <p>8.4.21 Ce-Doped Lutetium Aluminum Garnet 262</p> <p>8.4.22 Ce-Doped Barium Yttrium Garnet 263</p> <p>8.4.23 Aluminum Titanate 263</p> <p>8.4.24 Magnesium Aluminum Titanate 264</p> <p>8.4.25 Lanthanum Cobaltite 265</p> <p>8.5 Composite Ceramics 266</p> <p>8.5.1 Al2O3–ZrO2 Nanocomposite 266</p> <p>8.5.2 Alumina–Yttrium Aluminum Garnet 269</p> <p>8.6 Conclusions 269</p> <p>References 270</p> <p><b>9 Thin Film Deposition Techniques 277</b><br /><i>David Grosso, Cédric Boissière, and Marco Faustini</i></p> <p>9.1 Introduction 277</p> <p>9.2 General Aspects of Liquid Deposition Techniques 280</p> <p>9.2.1 A Multistep Process between Chemistry and Engineering 280</p> <p>9.2.2 Initial Solution (Sol–Gel Chemistry) 280</p> <p>9.2.3 Deposition Step (Solution Spreading) 283</p> <p>9.2.4 Evaporation Step (Progressive Concentration) 284</p> <p>9.2.5 Optional Patterning Processes 288</p> <p>9.2.6 Postdeposition Treatments (Stabilization, Consolidation, and Modification) 288</p> <p>9.3 Spin Coating 289</p> <p>9.3.1 Generalities on Spin Coating 289</p> <p>9.3.2 Fundamentals of Spin Coating 290</p> <p>9.3.3 Advantages and Drawbacks of Spin Coating 294</p> <p>9.3.4 Some Critical Examples of Films Prepared by Spin Coating 295</p> <p>9.4 Dip Coating 296</p> <p>9.4.1 Generalities on Dip Coating 296</p> <p>9.4.2 Fundamentals of Dip Coating 297</p> <p>9.4.2.1 Model for the Capillarity Regime 299</p> <p>9.4.2.2 Model for the Draining Regime 300</p> <p>9.4.2.3 Combining Models to Describe Simultaneously Both Regimes 301</p> <p>9.4.3 Advantages and Drawbacks of Dip Coating 302</p> <p>9.4.4 Some Critical Examples of Films Prepared by Dip Coating 302</p> <p>9.5 Alternative and Emerging Techniques 304</p> <p>9.5.1 Roll-to-Roll Coating Techniques 304</p> <p>9.5.2 Droplet-Assisted Deposition (Aerosol and Inkjet) 304</p> <p>9.5.3 Electro-assisted Deposition 308</p> <p>9.6 General Perspectives 310</p> <p>References 310</p> <p><b>10 Monolithic Sol–Gel Materials 317</b><br /><i>Raz Gvishi</i></p> <p>10.1 Introduction 317</p> <p>10.2 Principles of Sol–Gel Monolith Fabrication 319</p> <p>10.2.1 Hydrolysis and Condensation 319</p> <p>10.2.2 Role of Drying in Monolith Fabrication 320</p> <p>10.2.3 Chemical Composition Effects 321</p> <p>10.2.3.1 Metal Alkoxide Precursor Types 321</p> <p>10.2.3.2 pH Effect: Type of Catalyst Used 321</p> <p>10.2.3.3 H2O: Si Molar Ratio (R) 322</p> <p>10.2.3.4 Steric Effect of Precursor Ligand Groups 323</p> <p>10.2.3.5 Functionality of Organically Modified Silanes 323</p> <p>10.3 Routes for Fabrication of Monoliths 324</p> <p>10.3.1 Xerogel Monoliths 325</p> <p>10.3.1.1 Methods for Preparing Nonsilica Xerogel Monoliths 325</p> <p>10.3.1.2 Methods for Preparing Silica Xerogel Monoliths 327</p> <p>10.3.2 Organically Modified Silane Monoliths 329</p> <p>10.3.2.1 ORMOSIL Inorganic–Organic Hybrid Monoliths in One Phase 330</p> <p>10.3.2.2 Hybrid Monoliths by Fast Sol–Gel (FSG) Process 331</p> <p>10.3.3 Multiphasic Composite Hybrid Monoliths 333</p> <p>10.3.4 Aerogel Monoliths 338</p> <p>10.4 Summary 339</p> <p>References 340</p> <p><b>11 Hollow Inorganic Spheres 345</b><br />Atsushi Shimojima</p> <p>11.1 Introduction 345</p> <p>11.2 General Strategies 345</p> <p>11.2.1 Templating Methods 345</p> <p>11.2.2 Template-Free Methods 347</p> <p>11.3 Typical Synthesis Procedures 347</p> <p>11.3.1 Hollow Silica Particles 347</p> <p>11.3.2 Hollow Mesoporous Silica Particles 350</p> <p>11.3.3 Hollow Organosilica Nanoparticles 354</p> <p>11.3.4 Hollow Crystalline Silicate Particles 355</p> <p>11.3.5 Hollow Titania (TiO2) Particles 357</p> <p>11.3.6 Hollow Particles of Other Metal Oxides 359</p> <p>11.4 Applications 360</p> <p>11.4.1 Antireflective Coatings 360</p> <p>11.4.2 Catalysis 361</p> <p>11.4.3 Lithium Ion Battery 362</p> <p>11.4.4 Biomedical Applications 363</p> <p>11.5 Summary 365</p> <p>References 365</p> <p><b>12 Sol–Gel Coatings by Electrochemical Deposition 373</b><br /><i>Liang Liu and Daniel Mandler</i></p> <p>12.1 Introduction 373</p> <p>12.2 Mechanism of the Sol–Gel Electrochemical Deposition 374</p> <p>12.3 Manipulation of the Sol–Gel Electrochemical Deposition 379</p> <p>12.3.1 Effect of Deposition Parameters 379</p> <p>12.3.2 Electrochemical Deposition of Nanostructured Silica Thin Films 383</p> <p>12.3.3 Selective Electrochemical Deposition on Patterns 385</p> <p>12.3.4 Local Electrochemical Deposition of Sol–Gel Films by Scanning Electrochemical Microscopy 386</p> <p>12.4 Electrochemical Codeposition of Sol–Gel-Based Hybrid and Composite Films 388</p> <p>12.4.1 Electrodeposition of Sol–Gel-Based Hybrid Films 389</p> <p>12.4.2 Electrodeposition of Sol–Gel-Based Composite Films 390</p> <p>12.5 Applications of Electrochemically Deposited Sol–Gel Films 394</p> <p>12.5.1 Corrosion Protection and Adhesion Promotion 394</p> <p>12.5.2 Electrochemical Sensors 397</p> <p>12.5.3 Biocomposite Films 400</p> <p>12.5.4 Other Applications 405</p> <p>12.6 Summary 408</p> <p>Abbreviations for Silanes 409</p> <p>Acknowledgments 410</p> <p>References 410</p> <p><b>13 Nanofibers and Nanotubes 415<br /></b><i>Il-Doo Kim and Seon-Jin Choi</i></p> <p>13.1 Introduction 415</p> <p>13.2 Nanofibers 415</p> <p>13.2.1 Electrospinning Process 416</p> <p>13.2.2 Polymer Nanofibers 417</p> <p>13.2.3 Metal Nanofibers 419</p> <p>13.2.4 Metal Oxide Nanofibers 421</p> <p>13.2.5 Multicomposite Nanofibers 424</p> <p>13.2.6 Graphene-Functionalized Nanofibers 426</p> <p>13.3 Nanotubes 427</p> <p>13.3.1 Direct Synthetic Methods of Nanotubes 427</p> <p>13.3.1.1 Hydrothermal Synthetic Routes 427</p> <p>13.3.1.2 Electrochemical Synthetic Routes 428</p> <p>13.3.1.3 Electrospinning Routes 428</p> <p>13.3.2 Indirect Synthetic Methods of Nanotubes 431</p> <p>13.3.2.1 AAO Templating Routes 431</p> <p>13.3.2.2 Inorganic Layer Templating Routes 432</p> <p>13.3.2.3 Polymer Templating Routes 434</p> <p>13.3.2.4 Electrospun Nanofiber Templating Route 436</p> <p>13.4 Summary and Future Perspectives 439</p> <p>References 439</p> <p><b>14 Nanoarchitectures by Sol–Gel from Silica and Silicate Building Blocks 443</b><br /><i>Pîlar Aranda, Carolina Belver, and Eduardo Ruiz-Hitzky</i></p> <p>14.1 Introduction 443</p> <p>14.2 Porous Clay Nanoarchitectures Using Sol–Gel Approaches 444</p> <p>14.3 Porous Nanoarchitectures from Delaminated Clays 450</p> <p>14.4 Fibrous Silicates as Building Blocks in Sol–Gel Nanoarchitectures Derived from Clays 457</p> <p>14.5 Conclusion 464</p> <p>Acknowledgments 465</p> <p>References 465</p> <p><b>15 Sol–Gel for Metal Organic Frameworks (MOFs) 471</b><br /><i>Kang Liang, Raffaele Ricco, Julien Reboul, Shuhei Furukawa, and Paolo Falcaro</i></p> <p>15.1 Introduction 471</p> <p>15.2 Design and Synthetic Strategies of MOF–Sol–Gel-Based Structures 472</p> <p>15.2.1 MOFs Hosting Sol–Gel-Based Structures 472</p> <p>15.2.2 Surface Chemical Functionalization of Sol–Gel Materials and Ceramics for MOF Technology 475</p> <p>15.2.2.1 Nano/Microparticles 475</p> <p>15.2.2.2 Thin Films 476</p> <p>15.2.2.3 Membranes and Monoliths 477</p> <p>15.2.3 Engineered Ceramics and Hybrid Materials for Controlled MOF Nucleation and Growth 478</p> <p>15.2.3.1 Nano/Microparticles 478</p> <p>15.2.3.2 Thin Films and Membranes 479</p> <p>15.2.4 Conversion from Ceramics for the Fabrication of MOFs 480</p> <p>15.3 Conclusion and Remarks 482</p> <p>Acknowledgments 483</p> <p>References 483</p> <p><b>16 Silica Ionogels and Ionosilicas 487</b><br /><i>Peter Hesemann, Lydie Viau, and André Vioux</i></p> <p>16.1 Introduction 487</p> <p>16.2 Ionogels 488</p> <p>16.2.1 Brief Presentation of ILs 488</p> <p>16.2.2 Sol–Gel in Ionic Liquids 489</p> <p>16.2.2.1 Formic Acid Solvolysis Sol–Gel Way 490</p> <p>16.2.2.2 Hydrolysis Sol–Gel Way 491</p> <p>16.2.2.3 Mesoporous Silicas from Ionogels 492</p> <p>16.2.2.4 Particulate Ionogels 492</p> <p>16.2.3 Applications of Ionogels 493</p> <p>16.2.3.1 Conducting Properties of Confined ILs 493</p> <p>16.2.3.2 Hybrid Host Matrices for Ionogel Electrolytes 494</p> <p>16.2.3.3 Ionogel Electrolytes for Lithium Batteries 495</p> <p>16.2.3.4 Proton-Conducting Ionogel Membranes 495</p> <p>16.2.3.5 Ionogel Electrolytes for Solar Cells 495</p> <p>16.2.3.6 Ionogels Incorporating Task-Specific Solutes 495</p> <p>16.2.3.7 Ionogels for Drug Release Systems 497</p> <p>16.3 Ionosilicas 497</p> <p>16.3.1 Definitions 497</p> <p>16.3.1.1 Synthesis of Ionosilicas 498</p> <p>16.3.2 Synthesis of Surface-Functionalized Ionosilicas 498</p> <p>16.3.2.1 Postsynthesis Grafting Reactions 500</p> <p>16.3.2.2 Cocondensation Reactions 500</p> <p>16.3.3 Hybrid Ionosilicas 504</p> <p>16.3.4 Ionic Nanoparticles and Ionic Nanoparticle Networks 505</p> <p>16.3.5 Applications of Ionosilicas 506</p> <p>16.3.5.1 Catalysis 506</p> <p>16.3.5.2 Anion Exchange Reactions 507</p> <p>16.3.5.3 Molecular Recognition 507</p> <p>16.4 Conclusion 508</p> <p>References 508</p> <p><b>17 Aerogels 519</b><br /><i>Shanyu Zhao, Marina S. Manic, Francisco Ruiz-Gonzalez, and Matthias M. Koebel</i></p> <p>17.1 Introduction and Brief History 519</p> <p>17.2 Synthesis and Processing 521</p> <p>17.2.1 Gel Preparation 521</p> <p>17.2.1.1 Silica Gels 521</p> <p>17.2.1.2 Nonsilica Inorganic Oxide Gels 527</p> <p>17.2.1.3 Organic and Biopolymer Gels 529</p> <p>17.2.1.4 Exotic Gels 534</p> <p>17.2.2 Gel Aging and Solvent Exchange 535</p> <p>17.2.2.1 Aging Process 535</p> <p>17.2.2.2 Effect of Solvent Exchange 536</p> <p>17.2.3 Gel Modification and Chemical Functionalization 537</p> <p>17.2.4 Gel Drying 538</p> <p>17.2.4.1 Freeze-Drying 539</p> <p>17.2.4.2 Ambient Pressure Drying 540</p> <p>17.2.4.3 Supercritical Drying 543</p> <p>17.2.4.4 High-Temperature Supercritical Drying 544</p> <p>17.2.4.5 Low-Temperature Supercritical Drying 545</p> <p>17.3 Characterization Methods 546</p> <p>17.3.1 Structural Characterization 547</p> <p>17.3.2 Chemical Characterization 548</p> <p>17.3.3 Thermal Characterization 549</p> <p>17.3.4 Mechanical Characterization 550</p> <p>17.3.5 Optical Characterization 552</p> <p>17.4 Selected Examples and Applications 553</p> <p>17.4.1 Aerogels for Superinsulation 554</p> <p>17.4.1.1 Silica Aerogels 555</p> <p>17.4.1.2 Organic Aerogels 555</p> <p>17.4.2 Aerogels for Catalysis: Chemistry Applications 556</p> <p>17.4.2.1 Silica-Based Aerogel 556</p> <p>17.4.2.2 Alumina-Based Aerogel 556</p> <p>17.4.2.3 Titania-Based Aerogel 557</p> <p>17.4.2.4 Zirconia-Based Aerogel 557</p> <p>17.4.2.5 Carbon Aerogels 557</p> <p>17.4.2.6 Other Mixed Oxides Composite Aerogels 558</p> <p>17.4.3 Aerogels for Supercapacitor and Battery Research 558</p> <p>17.4.4 Aerogels in Space Exploration 558</p> <p>17.4.5 Aerogels for Biomedical Applications 559</p> <p>17.5 Trends, Conclusion, and Outlook 559</p> <p>17.5.1 Small Volume–High Specialization 559</p> <p>17.5.2 Large Volume–High Performance 560</p> <p>17.5.3 Outlook 561</p> <p>References 562</p> <p><b>18 Ordered Mesoporous Sol–Gel Materials: From Molecular Sieves to Crystal-Like Periodic Mesoporous Organosilicas 575</b><br /><i>Sílvia C. Nunes, Paulo Almeida, and Verónica de Zea Bermudez</i></p> <p>18.1 Introduction 575</p> <p>18.2 Synthesis Mechanisms of Periodic Mesoporous Silica Materials 577</p> <p>18.2.1 Liquid Crystal Templating 578</p> <p>18.2.2 Cooperative Self-Assembly 578</p> <p>18.2.3 Evaporation-Induced Self-Assembly Mechanism 579</p> <p>18.2.4 Soft Templating 580</p> <p>18.3 Functionalization of Periodic Mesoporous Silica Materials 582</p> <p>18.3.1 Postsynthetic Grafting 583</p> <p>18.3.2 Direct Synthesis 583</p> <p>18.4 Periodic Mesoporous Organosilicas 584</p> <p>18.4.1 Synthesis Mechanisms 584</p> <p>18.4.2 Multifunctionalization 586</p> <p>18.4.3 Periodic Mesoporous Organosilicas with Amorphous Wall Structure 587</p> <p>18.4.4 Periodic Mesoporous Organosilicas with Crystal-Like Wall Structure 587</p> <p>18.4.5 Functionalization of Crystal-Like Periodic Mesoporous Organosilicas and Figures of Merit 591</p> <p>18.5 Future Trends 595</p> <p>Acknowledgments 596</p> <p>References 596</p> <p><b>19 Biomimetic Sol–Gel Materials 605</b><br /><i>Carole Aimé, Thibaud Coradin, and Francisco M. Fernandes</i></p> <p>19.1 Introduction 605</p> <p>19.2 Natural Sol–Gel Materials 606</p> <p>19.2.1 Biogenic Oxides 606</p> <p>19.2.2 Biochemical Conditions of Silica Formation 609</p> <p>19.2.3 Chemical Features of Biogenic Silica 610</p> <p>19.2.3.1 Silica Deposit in Higher Plants 610</p> <p>19.2.3.2 Diatoms Frustule 611</p> <p>19.2.3.3 Sponges Spicule 612</p> <p>19.2.4 Properties and Applications 614</p> <p>19.2.5 Overview 617</p> <p>19.3 Biomimetic Sol–Gel Chemistry 618</p> <p>19.3.1 Chemical Background from Biosilicification Processes 618</p> <p>19.3.1.1 Silaffins 618</p> <p>19.3.1.2 Silicateins 620</p> <p>19.3.2 Silicatein-Derived Biomimetic Sequences: From Proteins to Amino Acids 624</p> <p>19.3.2.1 Enzymes and Peptides 624</p> <p>19.3.2.2 Rational Design 625</p> <p>19.3.3 Silaffins-Derived Biomimetic Sequences Based on Polyamines 628</p> <p>19.3.3.1 Long-Chain Polyamines: Silica Formation and Morphogenesis Control 628</p> <p>19.3.3.2 Short-Chain Amines 629</p> <p>19.3.3.3 R5 Peptide 630</p> <p>19.3.4 Overview 630</p> <p>19.4 Biohybrid Materials from Bioinspired Mineralization Strategies 631</p> <p>19.4.1 Mineralization of Biomacromolecules 632</p> <p>19.4.1.1 Proteins 632</p> <p>19.4.1.2 Polysaccharides 635</p> <p>19.4.1.3 Complex Coacervates 636</p> <p>19.4.2 Mineralization of Microorganisms 637</p> <p>19.4.3 Materials and Devices Based on Biomimetic and Bioinspired Mineralization 638</p> <p>19.4.4 Overview 641</p> <p>19.5 Conclusions 641</p> <p>References 642</p> <p><b>Volume Two: Characterization and Properties of Sol-Gel Materials</b></p> <p><b>Part Three Characterization Techniques for Sol–Gel Materials 651</b></p> <p>20 Solid-State NMR Characterization of Sol–Gel Materials: Recent Advances 653<br /><i>Florence Babonneau, Christian Bonhomme</i></p> <p><b>21 Time-Resolved Small-Angle X-Ray Scattering 673</b><br /><i>Johan E. ten Elshof, Rogier Besselink, Tomasz M. Stawski, Hessel L. Castricum</i></p> <p><b>22 Characterization of Sol–Gel Materials by Optical Spectroscopy Methods 713</b><br /><i>Rui M. Almeida, Jian Xu</i></p> <p><b>23 Properties and Applications of Sol–Gel Materials: Functionalized Porous Amorphous Solids (Monoliths) 745</b><br /><i>Kazuki Nakanishi</i></p> <p><b>24 Sol–Gel Deposition of Ultrathin High-κ Dielectric Films 767</b><br /><i>An Hardy, Marlies K. Van Bael</i></p> <p><b>Part Four Properties 787</b></p> <p><b>25 Functional (Meso)Porous Nanostructures 789</b><br /><i>Andrea Feinle, Nicola Hüsing</i></p> <p><b>26 Sol–Gel Magnetic Materials 813</b><br /><i>Lucía Gutiérrez, Sabino Veintemillas-Verdaguer, Carlos J. Serna, María del Puerto Morales</i></p> <p><b>27 Sol–Gel Electroceramic Thin Films 841</b><br /><i>María Lourdes Calzada</i></p> <p><b>28 Organic–Inorganic Hybrids for Lighting 883</b><br /><i>Vânia Teixeira Freitas, Rute Amorim S. Ferreira, Luis D. Carlos</i></p> <p><b>29 Sol–Gel TiO2 Materials and Coatings for Photocatalytic and Multifunctional Applications 911</b><br /><i>Yolanda Castro, Alicia Durán</i></p> <p>30 Optical Properties of Luminescent Materials 929<br /><i>Sidney J.L. Ribeiro, Molíria V. dos Santos, Robson R. Silva, Édison Pecoraro, Rogéria R. Gonçalves, José Maurício A. Caiut</i></p> <p><b>31 Better Catalysis with Organically Modified Sol–Gel Materials 963</b><br /><i>David Avnir, Jochanan Blum, Zackaria Nairoukh</i></p> <p><b>32 Hierarchically Structured Porous Materials 987</b><br /><i>Ming-Hui Sun, Li-Hua Chen, Bao-Lian Su</i></p> <p><b>33 Structures and Properties of Ordered Nanostructured Oxides and Composite Materials 1031</b><br /><i>María Luz Martínez Ricci, Sara A. Bilmes</i></p> <p><b>Volume Three: Application of Sol-Gel Materials</b></p> <p><b>Part Five Applications 1055</b></p> <p><b>34 Sol–Gel for Environmentally Green Products 1057</b><br /><b>Rosaria Ciriminna, Mario Pagliaro, Giovanni Palmisano</b></p> <p><b>35 Sol–Gel Materials for Batteries and Fuel Cells 1071</b><br /><i>Jadra Mosa, Mario Aparicio</i></p> <p><b>36 Sol–Gel Materials for Energy Storage 1119</b><br /><i>Leland Smith, Ryan Maloney, Bruce Dunn</i></p> <p><b>37 Sol–Gel Materials for Pigments and Ceramics 1145</b><br /><i>Guillermo Monrós</i></p> <p><b>38 Sol–Gel for Gas Sensing Applications 1173</b><br /><i>Enrico Della Gaspera, Massimo Guglielmi, Alessandro Martucci</i></p> <p><b>39 Reinforced Sol–Gel Silica Coatings 1207</b><br /><i>Antonio Julio López, Joaquín Rams</i></p> <p><b>40 Sol–Gel Optical and Electro-Optical Materials 1239</b><br /><i>Marcos Zayat, David Almendro, Virginia Vadillo, David Levy</i></p> <p><b>41 Luminescent Solar Concentrators and the Ways to Increase Their Efficiencies 1281</b><br /><i>Renata Reisfeld</i></p> <p><b>42 Mesoporous Silica Nanoparticles for Drug Delivery and Controlled Release Applications 1309</b><br /><i>Montserrat Colilla, Alejandro Baeza, María Vallet-Regí</i></p> <p>43 Sol–Gel Materials for Biomedical Applications 1345<br /><b>Julian R. Jones</b></p> <p>44 <b>Self-Healing Coatings for Corrosion Protection of Metals 1371</b><br />George Kordas, Eleni K. Efthimiadou</p> <p><b>45 Aerogel Insulation for Building Applications 1385</b><br /><i>Bjørn Petter Jelle, Ruben Baetens, Arild Gustavsen</i></p> <p><b>46 Sol–Gel Nanocomposites for Electrochemical Sensor Applications 1413</b><br /><i>Pengfei Niu, Martí Gich, César Fernández-Sánchez, Anna Roig</i></p> <p>Index 1435</p>
"this is a great set of books......within each chapter there are gems of knowledge." (Chromatographia 2016)
David Levy is a Research Professor and head of the Sol-Gel Group at the Materials Science Institute of Madrid (ICMM) of the Consejo Superior de Investigaciones Cienti cas. His research interests are optical materials (bulk materials; thin- lm coatings as AR optical coatings, protection transparent coatings and functional coatings; oxide nanoparticles) and liquid crystal materials, by Sol-Gel processing and their applications. During his time at The Hebrew University of Jerusalem David Levy pioneered the sol-gel process for the preparation of organically doped silica-gel glasses. He has more than 130 publications and a number of patents to his name, and has received numerous prizes in recognition of his groundbreaking work on sol-gel materials, including the ?First Ulrich Prize? and the nomination to King Juan Carlos-I research award.<br> <br> Marcos Zayat is currently vice-director of the Materials Science Institute of Madrid (ICMM). His scienti c interests are centered on the design of new optical coatings and the characterization of their physicochemical properties. After having obtained his PhD in Materials Science from The Hebrew University of Jerusalem in 1997, Marcos Zayat joined the ICMM where he continues developing sol-gel materials for optical and electrooptical applications. He has published more than fty original articles in prestigious scienti c journals.<br>

Diese Produkte könnten Sie auch interessieren: