Details

Visible-Light-Active Photocatalysis


Visible-Light-Active Photocatalysis

Nanostructured Catalyst Design, Mechanisms, and Applications
1. Aufl.

von: Srabanti Ghosh

CHF 164.00

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 29.03.2018
ISBN/EAN: 9783527808151
Sprache: englisch
Anzahl Seiten: 640

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting.<br> Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. <br> <br> With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.<br>
<p>Preface xvii</p> <p><b>Part I Visible-Light Active Photocatalysis – Research and Technological Advancements 1</b></p> <p><b>1 Research Frontiers in Solar Light Harvesting 3<br /></b><i>Srabanti Ghosh</i></p> <p>1.1 Introduction 3</p> <p>1.2 Visible-Light-Driven Photocatalysis for Environmental Protection 4</p> <p>1.3 Photocatalysis forWater Splitting 8</p> <p>1.4 Photocatalysis for Organic Transformations 11</p> <p>1.5 Mechanistic Studies of Visible-Light-Active Photocatalysis 13</p> <p>1.6 Summary 14</p> <p>References 15</p> <p><b>2 Recent Advances on Photocatalysis forWater Detoxification and CO2 Reduction 27<br /></b><i>Carlotta Raviola and Stefano Protti</i></p> <p>2.1 Introduction 27</p> <p>2.2 Photocatalysts for Environmental Remediation and CO2 Reduction 30</p> <p>2.3 Photoreactors for Solar Degradation of Organic Pollutants and CO2 Reduction 38</p> <p>2.4 Conclusion 44</p> <p>Acknowledgment 44</p> <p>References 45</p> <p><b>3 Fundamentals of PhotocatalyticWater Splitting (Hydrogen and Oxygen Evolution) 53<br /></b><i>Sanjib Shyamal, Paramita Hajra, Harahari Mandal, Aparajita Bera, Debasis Sariket, and Chinmoy</i> <i>Bhattacharya</i></p> <p>3.1 Introduction 53</p> <p>3.2 Strategy for Development of Photocatalyst Systems forWater Splitting 54</p> <p>3.3 Electrochemistry of Semiconductors at the Electrolyte Interface 56</p> <p>3.4 Effect of Light at the Semiconductor–Electrolyte Interface 58</p> <p>3.5 Conversion and Storage of Sunlight 62</p> <p>3.6 Electrolysis and Photoelectrolysis 63</p> <p>3.7 Development of Photocatalysts for Solar-DrivenWater Splitting 65</p> <p>3.8 Approaches to Develop Visible-Light-AbsorbingMetal Oxides 66</p> <p>3.9 Conclusions 68</p> <p>References 68</p> <p><b>4 Photoredox Catalytic Activation of Carbon—Halogen Bonds: C—H Functionalization Reactions under</b> <b>Visible Light 75<br /></b><i>Javier I. Bardagi and Indrajit Ghosh</i></p> <p>4.1 Introduction 75</p> <p>4.2 Activation of Alkyl Halides 77</p> <p>4.3 Activation of Aryl Halides 91</p> <p>4.4 Factors That Determine the Carbon–Halogen Bond Activation of Aryl Halides 108</p> <p>4.5 Factors That Determine the Yields of the C—H Arylated Products 109</p> <p>4.6 Achievements and Challenges Ahead 109</p> <p>4.7 Conclusion 110</p> <p>References 110</p> <p><b>Part II Design and Developments of Visible Light Active Photocatalysis 115</b></p> <p><b>5 Black TiO2: The New-Generation Photocatalyst 117<br /></b><i>Sanjay Gopal Ullattil, Soumya B. Narendranath, and Pradeepan Periyat</i></p> <p>5.1 Introduction 117</p> <p>5.2 Designing Black TiO2 Nanostructures 118</p> <p>5.3 Black TiO2 as Photocatalyst 122</p> <p>5.4 Conclusions 123</p> <p>References 123</p> <p><b>6 Effect of Modification of TiO2 with Metal Nanoparticles on Its Photocatalytic Properties Studied by</b> <b>Time-Resolved Microwave Conductivity 129<br /></b><i>Hynd Remita,María GuadalupeMéndezMedrano, and Christophe Colbeau-Justin</i></p> <p>6.1 Introduction 129</p> <p>6.2 Deposition of Metal Nanoparticles by Radiolysis and by Photodeposition Method 130</p> <p>6.3 Electronic Properties Studied Time-Resolved Microwave Conductivity 132</p> <p>6.4 Modification of TiO2 with Au Nanoparticles 138</p> <p>6.5 Modification of TiO2 with Bi Clusters 144</p> <p>6.6 Surface Modification of TiO2 with Bimetallic Nanoparticles 146</p> <p>6.7 The Effect of Metal Cluster Deposition Route on Structure and Photocatalytic Activity of Mono- and Bimetallic Nanoparticles Supported on TiO2 155</p> <p>6.8 Summary 156</p> <p>References 157</p> <p><b>7 Glassy Photocatalysts: New Trend in Solar Photocatalysis 165<br /></b><i>Bharat B. Kale,Manjiri A. Mahadadalkar, and Ashwini P. Bhirud</i></p> <p>7.1 Introduction 165</p> <p>7.2 Fundamentals of H2S Splitting 166</p> <p>7.3 Designing the Assembly for H2S Splitting 168</p> <p>7.4 Chalcogenide Photocatalysts 170</p> <p>7.5 Limitations of Powder Photocatalysts 170</p> <p>7.6 Glassy Photocatalyst: Innovative Approach 171</p> <p>7.7 General Methods for Glasses Preparation 172</p> <p>7.8 Color of the Glass – Bandgap Engineering by Growth of</p> <p>7.9 CdS–Glass Nanocomposite 174</p> <p>7.10 Bi2S3–Glass Nanocomposite 178</p> <p>7.11 Ag3PO4–Glass Nanocomposite 179</p> <p>7.12 Summary 183</p> <p>Acknowledgments 184</p> <p>References 184</p> <p><b>8 Recent Developments in Heterostructure-Based Catalysts for Water Splitting 191<br /></b><i>J. A. SavioMoniz</i></p> <p>8.1 Introduction 191</p> <p>8.2 Visible-Light-Responsive Junctions 195</p> <p>8.3 Visible-Light-Driven Photocatalyst/OEC Junctions 207</p> <p>8.4 Observation of Charge Carrier Kinetics in Heterojunction Structure 209</p> <p>8.5 Conclusions 215</p> <p>References 216</p> <p><b>9 Conducting Polymers Nanostructures for Solar-Light Harvesting 227<br /></b><i>Srabanti Ghosh, Hynd Remita, and Rajendra N. Basu</i></p> <p>9.1 Introduction 227</p> <p>9.2 Conducting Polymers as Organic Semiconductor 228</p> <p>9.3 Conducting Polymer-Based Nanostructured Materials 231</p> <p>9.4 Synthesis of Conducting Polymer Nanostructures 231</p> <p>9.5 Applications of Conducting Polymer 233</p> <p>9.6 Conclusion 245</p> <p>References 246</p> <p><b>Part III Visible Light Active Photocatalysis for Solar Energy Conversion and Environmental Protection 253</b></p> <p><b>10 Sensitization of TiO2 by Dyes: A Way to Extend the Range of Photocatalytic Activity of TiO2 to the</b> <b>Visible Region 255<br /></b><i>Marta I. Litter, Enrique San Román, the late María A. Grela, Jorge M. Meichtry, and Hernán B. Rodríguez</i></p> <p>10.1 Introduction 255</p> <p>10.2 Mechanisms Involved in theUse of Dye-Modified TiO2 Materials for Transformation of Pollutants and Hydrogen Production under Visible Irradiation 256</p> <p>10.3 Use of Dye-Modified TiO2 Materials for Energy Conversion in Dye-Sensitized Solar Cells 260</p> <p>10.4 Self-Sensitized Degradation of Dye Pollutants 262</p> <p>10.5 Use of Dye-Modified TiO2 for Visible-Light-Assisted Degradation of Colorless Pollutants 265</p> <p>10.6 Water Splitting and Hydrogen Production using Dye-Modified TiO2 Photocatalysts under Visible Light 269</p> <p>10.7 Conclusions 270</p> <p>Acknowledgement 271</p> <p>References 271</p> <p><b>11 Advances in the Development of Novel Photocatalysts for Detoxification 283<br /></b><i>Ciara Byrne,Michael Nolan, Swagata Banerjee, Honey John, Sheethu Jose, Pradeepan Periyat, and Suresh</i> <i>C. Pillai</i></p> <p>11.1 Introduction 283</p> <p>11.2 Theoretical Studies of Photocatalysis 285</p> <p>11.3 Metal-Doped Photocatalysts for Detoxification 296</p> <p>11.4 Graphene-TiO2 Composites for Detoxification 299</p> <p>11.5 Commercial Applications of Photocatalysis in Environmental Detoxification 303</p> <p>11.6 Conclusions 313</p> <p>References 313</p> <p><b>12 Metal-Free Organic Semiconductors for Visible-Light-Active Photocatalytic Water Splitting 329<br /></b><i>S. T. Nishanthi, Battula Venugopala Rao, and Kamalakannan Kailasam</i></p> <p>12.1 Introduction 329</p> <p>12.2 Organic Semiconductors for PhotocatalyticWater Splitting and Emergence of Graphitic Carbon Nitrides 331</p> <p>12.3 Graphitic Carbon Nitrides for PhotocatalyticWater Splitting 332</p> <p>12.4 Novel Materials 349</p> <p>12.5 Conclusions and Perspectives 351</p> <p>References 352</p> <p><b>13 Solar Photochemical Splitting ofWater 365<br /></b><i>Srinivasa Rao Lingampalli and C. N. R. Rao</i></p> <p>13.1 Introduction 365</p> <p>13.2 PhotocatalyticWater Splitting 366</p> <p>13.3 OverallWater Splitting 371</p> <p>13.4 Oxidation ofWater 376</p> <p>13.5 Reduction ofWater 380</p> <p>13.6 Coupled Reactions 386</p> <p>13.7 Summary and Outlook 387</p> <p>Acknowledgments 387</p> <p>References 387</p> <p><b>14 Recent Developments on Visible-Light Photoredox Catalysis by Organic Dyes for Organic Synthesis</b> <b>393<br /></b><i>Shounak Ray, Partha Kumar Samanta, and Papu Biswas</i></p> <p>14.1 Introduction 393</p> <p>14.2 General Mechanism 393</p> <p>14.3 Recent Application of Organic Dyes as Visible-Light Photoredox Catalysts 396</p> <p>14.4 Conclusion 415</p> <p>Abbreviations 415</p> <p>References 415</p> <p><b>15 Visible-Light Heterogeneous Catalysts for Photocatalytic CO2 Reduction 421<br /></b><i>Sanyasinaidu Boddu, S.T. Nishanthi, and Kamalakannan Kailasam</i></p> <p>15.1 Introduction 421</p> <p>15.2 Basic Principles of Photocatalytic CO2 Reduction 422</p> <p>15.3 Inorganic Semiconductors 424</p> <p>15.4 Organic Semiconductors 430</p> <p>15.5 Semiconductor Heterojunctions 436</p> <p>15.6 Conclusion and Perspectives 437</p> <p>References 438</p> <p><b>Part IV Mechanistic Studies of Visible Light Active Photocatalysis 447</b></p> <p><b>16 Band-gap Engineering of Photocatalysts: Surface Modification versus Doping 449<br /></b><i>Ewa Kowalska, ZhishunWei, and Marcin Janczarek</i></p> <p>16.1 Introduction 449</p> <p>16.2 Doping 451</p> <p>16.3 Surface Modification 458</p> <p>16.4 Heterojunctions 468</p> <p>16.5 Z-Scheme 470</p> <p>16.6 Hybrid Nanostructures 471</p> <p>16.7 Summary 473</p> <p>References 473</p> <p><b>17 Roles of the Active Species Generated during Photocatalysis 485<br /></b><i>Mats Jonsson</i></p> <p>17.1 Introduction 485</p> <p>17.2 Mechanism of Photocatalysis in TiO2/Water Systems 486</p> <p>17.3 Active Species Generated at the Catalyst/Water Interface 486</p> <p>17.4 Oxidative Degradation of Solutes Present in the Aqueous Phase 490</p> <p>17.5 Impact of H2O2 on Oxidative Degradation of Solutes Present in the Aqueous Phase 492</p> <p>17.6 The Role of Common Anions Present in the Aqueous Phase 493</p> <p>17.7 Summary of Active Species Present in Heterogeneous Photocatalysis in Water 494</p> <p>References 495</p> <p><b>18 Visible-Light-Active Photocatalysis: Nanostructured Catalyst Design,Mechanisms, and Applications</b> <b>499<br /></b><i>Ramachandran Vasant Kumar andMichael Coto</i></p> <p>18.1 Introduction 499</p> <p>18.2 Historical Background 499</p> <p>18.3 Basic Concepts 501</p> <p>18.4 Structure of TiO2 504</p> <p>18.5 Photocatalytic Reactions 506</p> <p>18.6 Physical Architectures of TiO2 507</p> <p>18.7 Visible-Light Photocatalysis 509</p> <p>18.8 Ion Doping and Ion Implantation 510</p> <p>18.9 Dye Sensitization 513</p> <p>18.10 Noble Metal Loading 514</p> <p>18.11 Coupled Semiconductors 518</p> <p>18.12 Carbon–TiO2 Composites 518</p> <p>18.13 Alternatives to TiO2 520</p> <p>18.14 Conclusions 521</p> <p>References 522</p> <p><b>Part V Challenges and Perspectives of Visible Light Active Photocatalysis for Large Scale Applications 527</b></p> <p><b>19 Quantum Dynamics Effects in Photocatalysis 529<br /></b><i>Abdulrahiman Nijamudheen and Alexey V. Akimov</i></p> <p>19.1 Introduction 529</p> <p>19.2 Computational Approaches to Model Adiabatic Processes in Photocatalysis 531</p> <p>19.3 Computational Approaches to Model Nonadiabatic Effects in Photocatalysis 532</p> <p>19.4 Quantum Tunneling in Adiabatic and Nonadiabatic Dynamics 535</p> <p>19.5 The Mechanisms of Organic Reactions Catalyzed by Semiconductor Photocatalysts 541</p> <p>19.5.1 Methanol Photooxidation on Semiconductor Surfaces 541</p> <p>19.5.2 Water-Splitting Reactions on Semiconductor Surfaces 544</p> <p>19.5.3 Carbon Oxide Redox Reactions on Semiconductor Surfaces 546</p> <p>19.6 Conclusions and Outlook 547</p> <p>References 549</p> <p><b>20 An Overview of Solar Photocatalytic Reactor Designs and Their Broader Impact on the Environment</b> <b>567<br /></b><i>Justin D. Glover, Adam C. Hartley, Reid A.Windmiller, Naoma S. Nelsen, and Joel E. Boyd</i></p> <p>20.1 Introduction 567</p> <p>20.2 Materials 568</p> <p>20.3 Slurry-Style Photocatalysis 569</p> <p>20.4 Deposited Photocatalysts 569</p> <p>20.5 Applications 570</p> <p>20.6 Conclusion 577</p> <p>References 577</p> <p><b>21 Conclusions and FutureWork 585<br /></b><i>Srabanti Ghosh</i></p> <p>Index 589</p>
Dr. Srabanti Ghosh is currently a Senior Research Associate (Scientists' Pool Scheme) in the Fuel Cell and Battery Division, at the CSIR-Central Glass and Ceramic Research Institute in Kolkota, India. She received her PhD in 2010 from UGC-DAE Consortium for Scientific Research, Kolkata Centre and Jadavpur University, Kolkata, followed by a position as research associate at the Centre for Advanced Material, Indian Association for the Cultivation of Science in Kolkota. After a research stay as a postdoctoral fellow (RBUCE UP, Marie Curie Cofund) at the Laboratoire de Chimie Physique, University of Paris-Sud, France, she was appointed as Visiting Assistant Professor at the S. N. Bose National Centre for Basic Sciences in Kolkata, India. Her research interests encompass synthesis and applications of semiconductor, graphene and polymer-based nanomaterials, sensing, solar light harvesting, liquid fuel cells and catalysis

Diese Produkte könnten Sie auch interessieren:

N4-Macrocyclic Metal Complexes
N4-Macrocyclic Metal Complexes
von: J.H. Zagal, Fethi Bedioui, J.P. Dodelet
PDF ebook
CHF 236.00
Modern Aspects of Electrochemistry 39
Modern Aspects of Electrochemistry 39
von: Constantinos G. Vayenas, Ralph E. White
PDF ebook
CHF 118.00