Details

Bioactive Natural Products


Bioactive Natural Products

Chemistry and Biology
1. Aufl.

von: Goutam Brahmachari

CHF 175.00

Verlag: Wiley-VCH (D)
Format: EPUB
Veröffentl.: 20.01.2015
ISBN/EAN: 9783527684427
Sprache: englisch
Anzahl Seiten: 544

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p>Natural compounds, which have evolved their function over millions of years, are often more efficient than man-made compounds if a specific biological activity is needed, e.g. as an enzyme inhibitor or as a toxin to kill a cancer cell.</p> <p>This book comprising of sixteen technical chapters, highlights the chemical and biological aspects of potential natural products with an intention of unravelling their pharmaceutical applicability in modern drug discovery processes.</p> <p><b>Key features:</b></p> <ul> <li>Covers the synthesis, semi-synthesis and also biosynthesis of potentially bioactive natural products</li> <li>Features chemical and biological advances in naturally occurring organic compounds describing their chemical transformations, mode of actions, and structure-activity relationships</li> <li>40 expert scientists from around the world report their latest findings and outline future opportunities for the development of novel and highly potent drugs based on natural products operating at the interface of chemistry and biology</li> <li>Forward-looking: Addresses opportunities and cutting-edge developments rather than well-documented basic knowledge, pinpoints current trends and future directions in this rapidly-evolving field</li> <li>Application-oriented: Throughout the book, the focus is on actual and potential applications in pharmacology and biotechnology</li> </ul> <p>This book is an essential resource for natural products chemists, medicinal chemists, biotechnologists, biochemists, pharmacologists, as well as the pharmaceutical and biotechnological industries.</p>
<p>Foreword VII</p> <p>Preface XXI</p> <p>About the Editor XXV</p> <p>List of Contributors XXVII</p> <p><b>1 An Overview 1</b><br /><i>Goutam Brahmachari</i></p> <p><b>2 Use of Chemical Genomics to Investigate the Mechanism of Action for Inhibitory Bioactive Natural Compounds 9</b><br /><i>Daniel Burnside, Houman Moteshareie, Imelda G. Marquez, Mohsen Hooshyar, BahramSamanfar, Kristina Shostak, Katayoun Omidi, Harry E. Peery,Myron L. Smith, and Ashkan Golshani</i></p> <p>2.1 Introduction: Antibiotic Resistance and the Use of Natural Products as a Source for Novel Antimicrobials 9</p> <p>2.2 Chemical Genetics and Genomics 10</p> <p>2.3 Development of GDA Technology 11</p> <p>2.3.1 The Use of Gene Deletion Arrays (GDAs) to Investigate MOA 12</p> <p>2.3.2 Chemical Genetic Interactions 12</p> <p>2.3.3 Quantifying Genetic and Chemical Genetic Interactions 14</p> <p>2.3.4 Data Analysis 15</p> <p>2.3.5 Platforms for Chemical Genomic GDA Studies 17</p> <p>2.3.6 Why Screen Natural Products in GDAs? 19</p> <p>2.3.7 Successful Applications of GDA Technology 21</p> <p>2.4 Concluding Remarks 22</p> <p>Abbreviations 24</p> <p>References 24</p> <p><b>3 High-Throughput Drug Screening Based on Cancer Signaling in Natural Product Screening 33</b><br /><i>Xinxin Zhang, Yuping Du, and Jinbo Yang</i></p> <p>3.1 Introduction 33</p> <p>3.2 Cancer Signaling Pathways with Their Own Drug Screening Assays in HTS 35</p> <p>3.2.1 β-Galactosidase Enzyme Complementation Assays for EGFR Signaling Drug Screening 35</p> <p>3.2.2 Fluorescence Superquenching Assays for PI3Ks Signaling Drug Screening 35</p> <p>3.2.3 TOP Flash Reporter Gene Assays forWnt Signaling Drug Screening 36</p> <p>3.2.4 Luciferase Reporter Gene Assays for STATs Signaling Drug Screening 37</p> <p>3.3 Concluding Remarks 37</p> <p>Abbreviations 38</p> <p>References 38</p> <p><b>4 Immunosuppressants: Remarkable Microbial Products 43</b><br /><i>Preeti Vaishnav, Young J. Yoo, Yeo J. Yoon, and Arnold L. Demain</i></p> <p>4.1 Introduction 43</p> <p>4.2 Discovery 44</p> <p>4.3 Mode of Action 47</p> <p>4.4 Biosynthesis 49</p> <p>4.4.1 Acetate, Propionate, Butyrate, Methionine, and Valine as Precursors of the Macrolide Rings of Sirolimus, Ascomycin, and Tacrolimus 49</p> <p>4.4.2 Pipecolate Moiety of the Macrolide Ring of Sirolimus, Ascomycin, and Tacrolimus 52</p> <p>4.4.3 The Final Step in Biosynthesis of Ascomycins and Tacrolimus 55</p> <p>4.4.4 Formation of the Substituted Cyclohexyl Moiety of Sirolimus, Tacrolimus, and Ascomycins 58</p> <p>4.4.5 Biosynthesis of Cyclosporin 61</p> <p>4.5 Genetics and Strain Improvement 63</p> <p>4.6 Fermentation and Nutritional Studies 65</p> <p>4.7 Other Activities of Immunosuppressants 69</p> <p>4.8 Concluding Remarks 71</p> <p>Acknowledgments 72</p> <p>References 72</p> <p><b>5 Activators and Inhibitors of ADAM-10 for Management of Cancer and Alzheimer’s Disease 83</b><br /><i>Prajakta Kulkarni, Manas K. Haldar, and Sanku Mallik</i></p> <p>5.1 Introduction to ADAM Family of Enzymes 83</p> <p>5.2 ADAM-10 Structure and Physiological Roles 85</p> <p>5.3 Pathological Significance 85</p> <p>5.3.1 Modulating ADAM Activity in Neurodegeneration 85</p> <p>5.3.2 ADAM-10 in Cancer Pathology 86</p> <p>5.4 ADAM-10 as Potential Drug Target 87</p> <p>5.5 Synthetic Inhibitors of ADAM-10 88</p> <p>5.6 Natural Products as Activators and Inhibitors for ADAM-10 92</p> <p>5.7 Natural Products as ADAM-10 Activators 93</p> <p>5.7.1 Ginsenoside R 94</p> <p>5.7.2 Curcuma longa 94</p> <p>5.7.3 Ginkgo biloba 95</p> <p>5.7.4 Green Tea 95</p> <p>5.8 Natural Products as ADAM-10 Inhibitors 96</p> <p>5.8.1 Triptolide 96</p> <p>5.8.1.1 Novel Derivatives and Carriers of Triptolide 98</p> <p>5.9 Concluding Remarks 99</p> <p>Abbreviations 99</p> <p>References 99</p> <p><b>6 Structure and Biological Activity of Polyether Ionophores and Their Semisynthetic Derivatives 107</b><br /><i>Micha? Antoszczak, Jacek Rutkowski, and Adam Huczy´nski</i></p> <p>6.1 Introduction 107</p> <p>6.2 Structures of Polyether Ionophores and Their Derivatives 108</p> <p>6.2.1 Monensin and Its Derivatives 112</p> <p>6.2.2 Salinomycin and Its Derivatives 117</p> <p>6.2.3 Lasalocid Acid A and Its Derivatives 118</p> <p>6.2.4 Other Polyether Ionophores 125</p> <p>6.2.4.1 Ionophores with Monensin Skeleton 125</p> <p>6.2.4.2 Polyether Ionophores with Dianemycin Skeleton 126</p> <p>6.3 Chemical Properties of Polyether Ionophores and Their Derivatives 130</p> <p>6.3.1 Complexes of Ionophores with Metal Cations 130</p> <p>6.3.2 Mechanism of Cation Transport 132</p> <p>6.4 Biological Activity 133</p> <p>6.4.1 Antibacterial Activity of Polyether Antibiotics and Their Derivatives 135</p> <p>6.4.2 Antifungal Activity of Polyether Antibiotics and Their Derivatives 140</p> <p>6.4.3 Antiparasitic Activity of Polyether Antibiotics and Their Derivatives 141</p> <p>6.4.4 Antiviral Activity of Polyether Antibiotics 144</p> <p>6.4.5 Anticancer Activity of Polyether Antibiotics and Their Derivatives 145</p> <p>6.5 Concluding Remarks 153</p> <p>Abbreviations 154</p> <p>References 155</p> <p><b>7 Bioactive Flavaglines: Synthesis and Pharmacology 171</b><br /><i>Christine Basmadjian, Qian Zhao, Armand de Gramont, Maria Serova, Sandrine Faivre, Eric Raymond, Stephan Vagner, Caroline Robert, Canan G. Nebigil, and Laurent Désaubry</i></p> <p>7.1 Introduction 171</p> <p>7.2 Biosynthetic Aspects 172</p> <p>7.3 Synthesis of Flavaglines 174</p> <p>7.3.1 Chemical Syntheses 174</p> <p>7.3.2 Biomimetic Synthesis of Flavaglines 179</p> <p>7.3.3 Synthesis of Silvestrol (6) 182</p> <p>7.4 Pharmacological Properties of Flavaglines 184</p> <p>7.4.1 Anticancer Activity 184</p> <p>7.4.2 Anti-inflammatory and Immunosuppressant Activities 190</p> <p>7.4.3 Cytoprotective Activity 190</p> <p>7.4.4 Antimalarial Activities 191</p> <p>7.5 Structure–Activity Relationships (SARs) 192</p> <p>7.6 Concluding Remarks 192</p> <p>Abbreviations 193</p> <p>References 194</p> <p><b>8 Beneficial Effect of Naturally Occurring Antioxidants against Oxidative Stress–Mediated Organ Dysfunctions 199</b><br /><i>Pabitra B. Pal, Shatadal Ghosh, and Parames C. Sil</i></p> <p>8.1 Introduction 199</p> <p>8.2 Oxidative Stress and Antioxidants 200</p> <p>8.2.1 Mangiferin and Its Beneficial Properties 200</p> <p>8.2.1.1 Antioxidant Activity of Mangiferin 200</p> <p>8.2.1.2 Anti-inflammatory Activity of Mangiferin 201</p> <p>8.2.1.3 Immunomodulatory Effect 202</p> <p>8.2.1.4 Antidiabetic Activity 203</p> <p>8.2.1.5 Iron Complexing Activity of Mangiferin 205</p> <p>8.2.1.6 Mangiferin Protects against Mercury-Induced Toxicity 205</p> <p>8.2.1.7 Mangiferin Protects Murine Liver against Pb(II)–Induced Hepatic Damage 206</p> <p>8.2.2 Arjunolic Acid 207</p> <p>8.2.2.1 Cardioprotective Effects of Arjunolic Acid 208</p> <p>8.2.2.2 Antidiabetic Activity 211</p> <p>8.2.2.3 Arjunolic Acid Protects Organs from Acetaminophen (APAP)-Induced Toxicity 211</p> <p>8.2.2.4 Arjunolic Acid Protects Liver from Sodium Fluoride-Induced Toxicity 212</p> <p>8.2.2.5 Protection against Arsenic-Induced Toxicity 212</p> <p>8.2.2.6 Mechanism of Action of Arjunolic Acid 214</p> <p>8.2.3 Baicalein 214</p> <p>8.2.3.1 Baicalein Protects Human Melanocytes from H2O2-Induced Apoptosis 215</p> <p>8.2.3.2 Protection against Doxorubicin-Induced Cardiotoxicity 215</p> <p>8.2.4 Silymarin 216</p> <p>8.2.4.1 Physicochemical and Pharmacokinetic Properties of Silymarin 216</p> <p>8.2.4.2 Metabolism of Silymarin 217</p> <p>8.2.4.3 Antioxidant Activity of Silymarin 217</p> <p>8.2.4.4 Protective Effect of Silydianin against Reactive Oxygen Species 219</p> <p>8.2.4.5 Diabetes and Silymarin 219</p> <p>8.2.4.6 Silibinin Protects H9c2 Cardiac Cells from Oxidative Stress 219</p> <p>8.2.4.7 Silymarin Protects Liver from Doxorubicin-Induced Oxidative Damage 220</p> <p>8.2.4.8 Silymarin and Hepatoprotection 220</p> <p>8.2.4.9 Stimulation of Liver Regeneration 221</p> <p>8.2.5 Curcumin 221</p> <p>8.2.5.1 Chemical Composition of Turmeric 222</p> <p>8.2.5.2 Metabolism of Curcumin 222</p> <p>8.2.5.3 Antioxidant Activity of Curcumin 222</p> <p>8.2.5.4 Diabetes and Curcumin 225</p> <p>8.2.5.5 Efficacy of Biodegradable Curcumin Nanoparticles in Delaying Cataract in Diabetic Rat Model 226</p> <p>8.3 Concluding Remarks 227</p> <p>Abbreviations 227</p> <p>References 228</p> <p><b>9 Isoquinoline Alkaloids and Their Analogs: Nucleic Acid and Protein Binding Aspects, and Therapeutic Potential for Drug Design 241</b><br /><i>Gopinatha S. Kumar</i></p> <p>9.1 Introduction 241</p> <p>9.2 Isoquinoline Alkaloids and Their Analogs 243</p> <p>9.2.1 Berberine 243</p> <p>9.2.1.1 Interaction of Berberine with Deoxyribonucleic Acids 244</p> <p>9.2.1.2 DNA Binding of Berberine Analogs 245</p> <p>9.2.1.3 Binding of Berberine and Analogs to Polymorphic DNA Conformations 248</p> <p>9.2.1.4 Interaction of Berberine and Analogs with Ribonucleic Acids 253</p> <p>9.2.1.5 Interaction of Berberine and Analogs with Proteins 258</p> <p>9.2.2 Palmatine 260</p> <p>9.2.2.1 Interaction of Palmatine and Analogs to Deoxyribonucleic Acids 261</p> <p>9.2.2.2 Interaction of Palmatine with RNA 262</p> <p>9.2.2.3 Interactions of Palmatine with Proteins 264</p> <p>9.2.3 Other Isoquinoline Alkaloids: Jatrorrhizine, Copticine, and Analogs – DNA/RNA and Protein Interactions 266</p> <p>9.3 Concluding Remarks 267</p> <p>Acknowledgments 268</p> <p>Abbreviations 268</p> <p>References 269</p> <p><b>10 The Potential of Peptides and Depsipeptides from Terrestrial and Marine Organisms in the Fight against Human Protozoan Diseases 279</b><br /><i>Jean Fotie</i></p> <p>10.1 Introduction 279</p> <p>10.2 Antiprotozoan Peptides and Depsipeptides of Natural Origin and Their Synthetic Analogs 281</p> <p>10.2.1 Apicidins 281</p> <p>10.2.2 Almiramides and Dragonamides 282</p> <p>10.2.3 Balgacyclamides 285</p> <p>10.2.4 Beauvericins and Allobeauvericin 286</p> <p>10.2.5 Aerucyclamides 286</p> <p>10.2.6 Chondramides and Jaspamides 288</p> <p>10.2.7 Enniatins and Beauvenniatins 289</p> <p>10.2.8 Gallinamide A, Dolastatin 10 and 15, and Symplostatin 4 290</p> <p>10.2.9 Hirsutatins and Hirsutellides 291</p> <p>10.2.10 Alamethicin 292</p> <p>10.2.11 Gramicidins 293</p> <p>10.2.12 Kahalalides 294</p> <p>10.2.13 Lagunamides 295</p> <p>10.2.14 Paecilodepsipeptides 295</p> <p>10.2.15 Pullularins 296</p> <p>10.2.16 Szentiamide 297</p> <p>10.2.17 Venturamides 297</p> <p>10.2.18 Viridamides 298</p> <p>10.2.19 Antiamoebin I 299</p> <p>10.2.20 Efrapeptins 299</p> <p>10.2.21 Valinomycin 300</p> <p>10.2.22 Cyclosporins 300</p> <p>10.2.23 Cyclolinopeptides 301</p> <p>10.2.24 Cycloaspeptides 302</p> <p>10.2.25 Mollamides 302</p> <p>10.2.26 Tsushimycin 303</p> <p>10.2.27 Leucinostatins 304</p> <p>10.2.28 Cardinalisamides 304</p> <p>10.2.29 Symplocamide A 305</p> <p>10.2.30 Xenobactin 305</p> <p>10.3 Concluding Remarks 306</p> <p>Abbreviations 307</p> <p>References 307</p> <p><b>11 Sesquiterpene Lactones: A Versatile Class of Structurally Diverse Natural Products and Their Semisynthetic Analogs as Potential Anticancer Agents 321</b><br /><i>Devdutt Chaturvedi, Parmesh Kumar Dwivedi, and Mamta Mishra</i></p> <p>11.1 Introduction: Structural Features and Natural Distribution 321</p> <p>11.2 Anticancer Activity of Sesquiterpenes Lactones 323</p> <p>11.2.1 Costunolide and Analogs 324</p> <p>11.2.2 Parthenolide and Analogs 328</p> <p>11.2.3 Helenalin and Analogs 331</p> <p>11.2.4 Artemisinin and Its Derivatives 332</p> <p>11.2.5 Tourneforin and Its Derivatives 333</p> <p>11.2.6 Eupalinin 333</p> <p>11.2.7 Inuviscolide and Related Compounds 334</p> <p>11.2.8 Japonicones 335</p> <p>11.2.9 Isoalantolactone and Related Compounds 335</p> <p>11.2.10 6-O-Angeloylenolin 336</p> <p>11.2.11 Miscellaneous STLs Under Different Classes 336</p> <p>11.2.11.1 Guaianolides 336</p> <p>11.2.11.2 Pseudoguaianolides 339</p> <p>11.2.11.3 Eudesmanolides 339</p> <p>11.2.11.4 Germacranolide 340</p> <p>11.2.11.5 Other Anticancer Sesquiterpene Lactones 340</p> <p>11.3 Structure–Activity Relationships (SARs) of Sesquiterpenes Lactones 340</p> <p>11.4 Concluding Remarks 341</p> <p>Acknowledgments 342</p> <p>Abbreviations 342</p> <p>References 342</p> <p><b>12 Naturally Occurring Calanolides: Chemistry and Biology 349</b><br /><i>Goutam Brahmachari</i></p> <p>12.1 Introduction 349</p> <p>12.2 Naturally Occurring Calanolides: Structures and Physical Properties 350</p> <p>12.3 Anti-HIV and Antituberculosis Potential of Calanolides 350</p> <p>12.3.1 Anti-HIV Potential of Calanolides 350</p> <p>12.3.2 Studies on Structure–Activity Relationships (SARs) of Calanolides 355</p> <p>12.3.3 Antituberculosis Potential of Calanolides and Related Derivatives 357</p> <p>12.4 Total Syntheses of Calanolides 360</p> <p>12.5 Concluding Remarks 369</p> <p>Acknowledgment and Disclosure 370</p> <p>Abbreviations 370</p> <p>References 371</p> <p><b>13 Selective Estrogen ReceptorModulators (SERMs) from Plants 375</b><br /><i>Divya Lakshmanan Mangalath and Chittalakkottu Sadasivan</i></p> <p>13.1 Introduction 375</p> <p>13.2 Structure of Estrogen Receptor 376</p> <p>13.3 Estrogen Receptor Signaling 377</p> <p>13.4 Selective Estrogen Receptor Modulators from Plants 379</p> <p>13.5 Molecular Basis of the Distinct SERM Action 381</p> <p>13.6 SERMs in the Treatment of Estrogen-Mediated Cancers 383</p> <p>13.7 Concluding Remarks 383</p> <p>Abbreviations 384</p> <p>References 384</p> <p><b>14 Introduction to the Biosynthesis and Biological Activities of Phenylpropanoids 387</b><br /><i>Luzia V. Modolo, Cristiane J. da Silva, Fernanda G. da Silva, Leonardo da Silva Neto, and ̂ Angelo de Fátima</i></p> <p>14.1 Introduction 387</p> <p>14.2 Biosynthesis of Phenylpropanoids 387</p> <p>14.3 Some Phenylpropanoid Subclasses 392</p> <p>14.3.1 Flavonoids 392</p> <p>14.3.1.1 Function in Plants 392</p> <p>14.3.1.2 Pharmacological Properties 393</p> <p>14.3.2 Coumarins 395</p> <p>14.3.2.1 Function in Plants 395</p> <p>14.3.2.2 Pharmacological Properties 396</p> <p>14.3.3 Stilbenes 398</p> <p>14.3.3.1 Function in Plants 398</p> <p>14.3.3.2 Pharmacological Properties 399</p> <p>14.4 Concluding Remarks 400</p> <p>Acknowledgments 400</p> <p>Abbreviations 400</p> <p>References 401</p> <p><b>15 Neuropeptides: Active Neuromodulators Involved in the Pathophysiology of Suicidal Behavior and Major Affective Disorders 409</b><br /><i>Gianluca Serafini, Daniel Lindqvist, Lena Brundin, Yogesh Dwivedi, Paolo Girardi, and Mario Amore</i></p> <p>15.1 Introduction 409</p> <p>15.2 Methods 410</p> <p>15.3 Involvement of Neuropeptides in the Pathophysiology of Suicidal Behavior and Major Affective Disorders 411</p> <p>15.3.1 Corticotropin-Releasing Factor 411</p> <p>15.3.2 Arginine Vasopressin 412</p> <p>15.3.3 Oxytocin 413</p> <p>15.3.4 Galanin 415</p> <p>15.3.5 Tachykinins 415</p> <p>15.3.6 Neuropeptide Y 418</p> <p>15.3.7 Cholecystokinin 418</p> <p>15.3.8 Dynorphins 420</p> <p>15.3.9 Orexin 420</p> <p>15.3.10 Neurotensin 423</p> <p>15.3.11 Nociceptin 424</p> <p>15.3.12 Melanin-Concentrating Hormone 424</p> <p>15.3.13 Neuropeptide S 425</p> <p>15.4 The Association between Neuropeptides, Suicidality, and Major Affective Disorders 426</p> <p>15.5 Discussion of the Main Findings 429</p> <p>15.6 Concluding Remarks 431</p> <p>Abbreviations 432</p> <p>References 433</p> <p><b>16 From Marine Organism to Potential Drug: Using Innovative Techniques to Identify and Characterize Novel Compounds − a Bottom-Up Approach 443</b><br /><i>A. Jonathan Singh, Jessica J. Field, Paul H. Atkinson, Peter T. Northcote, and John H. Miller</i></p> <p>16.1 Introduction 443</p> <p>16.2 Structural Screening Approach 445</p> <p>16.2.1 Case Study 1: Colensolide from Osmundaria colensoi 448</p> <p>16.2.2 Case Study 2: Zampanolide from Cacospongia mycofijiensis 449</p> <p>16.3 Testing for Bioactivity by Screening in Mammalian Cells 452</p> <p>16.4 Chemical Genetics and Network Pharmacology in Yeast for Target Identification 455</p> <p>16.5 Identification of Protein Targets by Proteomic Analysis on 2D Gels 462</p> <p>16.6 Validation of Compound Targets by Biochemical Analysis 462</p> <p>16.7 Next Steps in Drug Development 464</p> <p>16.8 Concluding Remarks 466</p> <p>Acknowledgments 467</p> <p>Abbreviations 467</p> <p>References 467</p> <p><b>17 Marine Natural Products: Biodiscovery, Biodiversity, and Bioproduction 473</b><br /><i>Miguel C. Leal and Ricardo Calado</i></p> <p>17.1 Introduction 473</p> <p>17.2 Biodiscovery: What and Where? 474</p> <p>17.2.1 Taxonomic Trends 475</p> <p>17.2.2 Geographical Trends 478</p> <p>17.3 Biodiversity 481</p> <p>17.3.1 Exploring Marine Biodiversity 481</p> <p>17.3.2 Protecting Marine Biodiversity 483</p> <p>17.4 From Biodiscovery to Bioproduction 484</p> <p>17.5 Concluding Remarks 486</p> <p>References 487</p> <p>Index 491</p>
Having obtained his Ph.D. degree from Visva-Bharati University (India) in 1997, Dr. Goutam Brahmachari started his academic career in 1998 at the same University, where he is now a Full Professor of Organic Chemistry since 2011. At present, he is responsible for teaching courses in organic chemistry, green chemistry, natural products chemistry, and physical methods in organic chemistry. Several students have received their Ph.D. degree under the supervision of Professor Brahmachari during this period, and a dozen research fellows are presently working with him both in the fields of natural products and synthetic organic chemistry. He has authored and edited several books on organic synthesis and on the chemistry and pharmacology of natural products, and serves as a member of the Indian Association for the Cultivation of Science (IACS), Kolkata.
Natural compounds, which have evolved their function over millions of years, are often more efficient than man-made compounds if a specific biological activity is needed, e.g. as an enzyme inhibitor or as a toxin to kill a cancer cell. This book comprising of sixteen technical chapters, highlights the chemical and biological aspects of potential natural products with an intention of unravelling their pharmaceutical applicability in modern drug discovery processes.<br />The synthesis, semi-synthesis and also biosynthesis of potentially bioactive natural products are covered. It also features chemical and biological advances in naturally occurring organic compounds describing their chemical transformations, mode of actions, and structure-activity relationships. 40 expert scientists from around the world report their latest findings and outline future opportunities for the development of novel and highly potent drugs based on natural products operating at the interface of chemistry and biology.<br />This book is aimed at natural products chemists, medicinal chemists, biotechnologists, biochemists, pharmacologists, as well as the pharmaceutical and biotechnological industries.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
CHF 236.00
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Theodor C.H. Cole, Klaus Roth
PDF ebook
CHF 62.00