Details

Flexible and Wearable Electronics for Smart Clothing


Flexible and Wearable Electronics for Smart Clothing


1. Aufl.

von: Gang Wang, Chengyi Hou, Hongzhi Wang

CHF 164.00

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 24.02.2020
ISBN/EAN: 9783527818563
Sprache: englisch
Anzahl Seiten: 360

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Provides the state-of-the-art on wearable technology for smart clothing <br> <br> The book gives a coherent overview of recent development on flexible electronics for smart clothing with emphasis on wearability and durability of the materials and devices. It offers detailed information on the basic functional components of the flexible and wearable electronics including sensing, systems-on-a-chip, interacting, and energy, as well as the integrating and connecting of electronics into textile form. It also provides insights into the compatibility and integration of functional materials, electronics, and the clothing technology. <br> <br> Flexible and Wearable Electronics for Smart Clothing offers comprehensive coverage of the technology in four parts. The first part discusses wearable organic nano-sensors, stimuli-responsive electronic skins, and flexible thermoelectrics and thermoelectric textiles. The next part examines textile triboelectric nanogenerators for energy harvesting, flexible and wearable solar cells and supercapacitors, and flexible and wearable lithium-ion batteries. Thermal and humid management for next-generation textiles, functionalization of fiber materials for washable smart wearable textiles, and flexible microfluidics for wearable electronics are covered in the next section. The last part introduces readers to piezoelectric materials and devices based flexible bio-integrated electronics, printed electronics for smart clothes, and the materials and processes for stretchable and wearable e-textile devices. <br> <br> -Presents the most recent developments in wearable technology such as wearable nanosensors, logic circuit, artificial intelligence, energy harvesting, and wireless communication <br> -Covers the flexible and wearable electronics as essential functional components for smart clothing from sensing, systems-on-a-chip, interacting, energy to the integrating and connecting of electronics <br> -Of high interest to a large and interdisciplinary target group, including materials scientists, textile chemists, and electronic engineers in academia and industry <br> <br> Flexible and Wearable Electronics for Smart Clothing will appeal to materials scientists, textile industry professionals, textile engineers, electronics engineers, and sensor developers. <br>
<p>Preface xiii</p> <p><b>Part I Sensing </b><b>1</b></p> <p><b>1 Wearable Organic Nano-sensors </b><b>3<br /></b><i>Wei Huang, Liangwen Feng, Gang Wang, and Elsa Reichmanis</i></p> <p>1.1 Introduction 3</p> <p>1.2 Wearable Organic Sensors Based on Different Device Architectures 4</p> <p>1.2.1 Resistor-Based Sensors 5</p> <p>1.2.1.1 Definitions and Important Parameters 5</p> <p>1.2.1.2 Materials and Applications 5</p> <p>1.2.2 Organic Field-Effect Transistor Based Sensors 11</p> <p>1.2.2.1 Definitions and Important Parameters 11</p> <p>1.2.2.2 Strategy and Applications 11</p> <p>1.2.3 Electrochemical Sensors 17</p> <p>1.2.3.1 Definitions and Important Parameters 17</p> <p>1.2.3.2 Strategy and Applications 17</p> <p>1.2.4 Diode-Based Sensors 20</p> <p>1.2.4.1 Definitions and Important Parameters 20</p> <p>1.2.4.2 Strategy and Applications 20</p> <p>1.2.5 Other Devices and System Integration 21</p> <p>1.3 Summary and Perspective 24</p> <p>References 25</p> <p><b>2 Stimuli-Responsive Electronic Skins </b><b>29<br /></b><i>Zhouyue Lei and Peiyi Wu</i></p> <p>2.1 Introduction 29</p> <p>2.2 Materials for Electronic Skins 29</p> <p>2.2.1 Liquid Metals 30</p> <p>2.2.2 Hydrogels 30</p> <p>2.2.3 Ionogels 33</p> <p>2.2.4 Elastomers 33</p> <p>2.2.5 Conductive Polymers 34</p> <p>2.2.6 Inorganic Materials 34</p> <p>2.3 Stimuli-Responsive Behaviors 35</p> <p>2.3.1 Electrical Signals in Response to Environmental Stimuli 35</p> <p>2.3.2 Stimuli-Responsive Self-healing 37</p> <p>2.3.3 Stimuli-Responsive Optical Appearances 38</p> <p>2.3.4 Stimuli-Responsive Actuations 40</p> <p>2.3.5 Improved Processability Based on Stimuli-Responsive Behaviors 40</p> <p>2.4 Understanding the Mechanism of Stimuli-Responsive Materials Applied for Electronic Skins 41</p> <p>2.5 Conclusion 44</p> <p>References 45</p> <p><b>3 Flexible Thermoelectrics and Thermoelectric Textiles </b><b>49<br /></b><i>Fei Jiao</i></p> <p>3.1 Introduction 49</p> <p>3.2 Thermoelectricity and Thermoelectric Materials 49</p> <p>3.3 Thermoelectric Generators 51</p> <p>3.4 Wearable Thermoelectric Generators for Smart Clothing 53</p> <p>3.4.1 Flexible Thermoelectrics 54</p> <p>3.4.1.1 Inorganic Thermoelectric Materials Related 54</p> <p>3.4.1.2 Organic Thermoelectric Materials Related 56</p> <p>3.4.1.3 Carbon-Based Thermoelectric Materials Related 58</p> <p>3.4.2 Fiber and Textile Related Thermoelectrics 60</p> <p>3.5 Prospects and Challenges 63</p> <p>References 64</p> <p><b>Part II Energy </b><b>67</b></p> <p><b>4 Textile Triboelectric Nanogenerators for Energy Harvesting </b><b>69<br /></b><i>Xiong Pu</i></p> <p>4.1 Introduction 69</p> <p>4.2 Fundamentals of Triboelectric Nanogenerators (TENGs) 70</p> <p>4.2.1 Theoretical Origin of TENGs 70</p> <p>4.2.2 Four Working Modes 71</p> <p>4.2.3 Materials for TENGs 72</p> <p>4.3 Progresses in Textile TENGs 73</p> <p>4.3.1 Materials for Textile TENGs 74</p> <p>4.3.2 Fabrication Processes for Textile TENGs 74</p> <p>4.3.3 Structures of Textile TENGs 75</p> <p>4.3.3.1 1D Fiber TENGs 75</p> <p>4.3.3.2 2D Fabric TENGs 77</p> <p>4.3.3.3 3D Fabric TENGs 80</p> <p>4.3.4 Washing Capability 81</p> <p>4.3.5 Self-charging Power Textiles 83</p> <p>4.4 Conclusions and Perspectives 83</p> <p>References 85</p> <p><b>5 Flexible and Wearable Solar Cells and Supercapacitors </b><b>87<br /></b><i>Kai Yuan, Ting Hu, and Yiwang Chen</i></p> <p>5.1 Introduction 87</p> <p>5.2 Flexible and Wearable Solar Cells 88</p> <p>5.2.1 Flexible and Wearable Dye-Sensitized Solar Cells 88</p> <p>5.2.2 Flexible and Wearable Polymer Solar Cells 93</p> <p>5.2.3 Flexible and Wearable Perovskite Solar Cells 98</p> <p>5.2.4 Flexible and Wearable Supercapacitors 104</p> <p>5.2.5 Flexible and Wearable Electric Double-Layer Capacitors (EDLCs) 108</p> <p>5.2.6 Flexible and Wearable Pseudocapacitor 111</p> <p>5.2.7 Integrated Solar Cells and Supercapacitors 115</p> <p>5.3 Conclusions and Outlook 118</p> <p>Acknowledgments 119</p> <p>References 120</p> <p><b>6 Flexible and Wearable Lithium-Ion Batteries </b><b>131<br /></b><i>Zhiwei Zhang, PengWang, Xianguang Miao, Peng Zhang, and Longwei Yin</i></p> <p>6.1 Introduction 131</p> <p>6.2 Typical Lithium-Ion Batteries 131</p> <p>6.3 Electrode Materials for Flexible Lithium-Ion Batteries 133</p> <p>6.3.1 Three-Dimensional (3D) Electrodes 133</p> <p>6.3.2 Two-Dimensional (2D) Electrodes 134</p> <p>6.3.2.1 Conductive Substrate-Based Electrodes 134</p> <p>6.3.2.2 Freestanding Film-Based Electrodes 136</p> <p>6.3.2.3 Graphene Papers 136</p> <p>6.3.2.4 CNT Papers 137</p> <p>6.3.2.5 Fabrication of Carbon Films by Vacuum Filtration Process 138</p> <p>6.3.2.6 Fabrication of Carbon Nanofiber Films by Electrospinning 140</p> <p>6.3.2.7 Fabrication of Carbon Films by Vapor-Phase Polymerization 141</p> <p>6.3.3 One-Dimensional (1D) Electrodes 141</p> <p>6.4 Flexible Lithium-Ion Batteries Based on Electrolytes 143</p> <p>6.4.1 Liquid-State Electrolytes 143</p> <p>6.4.1.1 Aprotic Organic Solvent 143</p> <p>6.4.1.2 Lithium Salts 144</p> <p>6.4.1.3 Additives 144</p> <p>6.4.2 Solid-State Electrolytes 144</p> <p>6.4.2.1 Inorganic Electrolytes 145</p> <p>6.4.2.2 Organic Electrolytes 145</p> <p>6.4.2.3 Organic/Inorganic Hybrid Electrolytes 146</p> <p>6.5 Inactive Materials and Components of Flexible LIBs 148</p> <p>6.5.1 Separators 148</p> <p>6.5.1.1 Types of Separators 148</p> <p>6.5.1.2 Physical and Chemical Properties of Separators 149</p> <p>6.5.1.3 Manufacture of Separators 150</p> <p>6.5.2 Casing/Packaging 151</p> <p>6.5.2.1 Casing/Package Components 152</p> <p>6.5.2.2 Casing/Packaging Structure 152</p> <p>6.5.3 Current Collectors 152</p> <p>6.5.4 Electrode Additive Materials 153</p> <p>6.5.4.1 Binders 153</p> <p>6.5.4.2 Conductive Additives 155</p> <p>6.6 Conclusions and Prospects 155</p> <p>References 156</p> <p><b>Part III Interacting </b><b>163</b></p> <p><b>7 Thermal and Humidity Management for Next-Generation Textiles </b><b>165<br /></b><i>Junxing Meng, Chengyi Hou, Chenhong Zhang, Qinghong Zhang, Yaogang Li, and Hongzhi Wang</i></p> <p>7.1 Introduction 165</p> <p>7.2 Passive Smart Materials 166</p> <p>7.3 Energy-Harvesting Materials 171</p> <p>7.4 Active Smart Materials 177</p> <p>7.5 Conclusion 180</p> <p>References 180</p> <p><b>8 Functionalization of Fiber Materials for Washable Smart Wearable Textiles </b><b>183<br /></b><i>Yunjie Yin, Yan Xu, and Chaoxia Wang</i></p> <p>8.1 Introduction 183</p> <p>8.1.1 Conductive Textiles 183</p> <p>8.1.2 Waterproof Conductive Textiles 184</p> <p>8.1.3 Washable Conductive Textiles 184</p> <p>8.1.4 Evaluation of Washable Conductive Textiles 184</p> <p>8.2 Fiber Materials Functionalization for Conductivity 185</p> <p>8.2.1 Conductive Fiber Substrates Based on Polymer Materials 185</p> <p>8.2.1.1 Dip Coating 185</p> <p>8.2.1.2 Graft Modification 186</p> <p>8.2.1.3 In Situ Chemical Polymerization 188</p> <p>8.2.1.4 Electrochemical Polymerization 190</p> <p>8.2.1.5 In Situ Vapor Phase Polymerization 190</p> <p>8.2.2 Conductive Fiber Substrates Based on Metal Materials 191</p> <p>8.2.2.1 Electroless Plating 191</p> <p>8.2.2.2 Metal Conductive Ink Printing 196</p> <p>8.2.3 Conductive Fiber Substrates Based on Carbon Material 197</p> <p>8.2.3.1 Vacuum Filtration 197</p> <p>8.2.3.2 Dip Coating 197</p> <p>8.2.3.3 Printing 201</p> <p>8.2.3.4 Dyeing 202</p> <p>8.2.3.5 Ultrasonic Depositing 202</p> <p>8.2.3.6 Brushing Coating 203</p> <p>8.2.4 Conductive Fiber Substrates Based on Graphene Composite Materials 203</p> <p>8.2.4.1 Dip Coating 203</p> <p>8.2.4.2 In Situ Polymerization 204</p> <p>8.3 Waterproof Modification for Conductive Fiber Substrates 204</p> <p>8.3.1 Dip-Coating Method 205</p> <p>8.3.2 Sol–Gel Method 205</p> <p>8.3.3 Chemical Vapor Deposition 206</p> <p>8.4 Washing Evaluations of Conductive Textiles 206</p> <p>8.5 Conclusions 208</p> <p>References 209</p> <p><b>9 Flexible Microfluidics for Wearable Electronics </b><b>213<br /></b><i>Dachao Li, Haixia Yu, Zhihua Pu, Xiaochen Lai, Chengtao Sun, Hao Wu, and Xingguo Zhang</i></p> <p>9.1 Introduction 213</p> <p>9.2 Materials 213</p> <p>9.3 Fabrication Technologies 215</p> <p>9.3.1 Layer Transfer and Lamination 215</p> <p>9.3.2 Soft Lithography 217</p> <p>9.3.3 Inkjet Printing 218</p> <p>9.3.4 3D Printing 218</p> <p>9.3.4.1 3D Printing Sacrificial Structures 219</p> <p>9.3.4.2 3D Printing Templates 220</p> <p>9.3.5 Fabrication of Open-Surface Microfluidics 220</p> <p>9.3.5.1 Fabrication of Paper-Based Microfluidic Device 220</p> <p>9.3.5.2 Fabrication of Textile-Based Microfluidic Device 223</p> <p>9.4 Applications 223</p> <p>9.4.1 Wearable Microfluidics for Sweat-Based Biosensing 224</p> <p>9.4.2 Wearable Microfluidics for ISF-Based Biosensing 226</p> <p>9.4.3 Wearable Microfluidics for Motion Sensing 228</p> <p>9.4.4 Other Flexible Microfluidics 229</p> <p>9.4.4.1 Soft Robotics 229</p> <p>9.4.4.2 Drug Delivery 229</p> <p>9.4.4.3 Implantable Devices 231</p> <p>9.4.4.4 Flexible Display 232</p> <p>9.5 Challenges 234</p> <p>References 234</p> <p><b>Part IV Integrating and Connecting </b><b>237</b></p> <p><b>10 Piezoelectric Materials and Devices Based Flexible Bio-integrated Electronics </b><b>239<br /></b><i>Xinge Yu</i></p> <p>10.1 Introduction 239</p> <p>10.2 Piezoelectric Materials 240</p> <p>10.3 Piezoelectric Devices for Biomedical Applications 242</p> <p>10.4 Conclusion 247</p> <p>References 247</p> <p><b>11 Flexible and Printed Electronics for Smart Clothes </b><b>253<br /></b><i>Yu Jiang and Nan Zhu</i></p> <p>11.1 Introduction 253</p> <p>11.2 Printing Technology 253</p> <p>11.2.1 Non-template Printing 253</p> <p>11.2.2 Template-Based Printing 256</p> <p>11.3 Flexible Substrates 257</p> <p>11.3.1 Commercially Available Polymers 257</p> <p>11.3.1.1 Polyethylene Terephthalate (PET) 257</p> <p>11.3.1.2 Polydimethylsiloxane (PDMS) 258</p> <p>11.3.1.3 Polyimide (PI) 260</p> <p>11.3.1.4 Polyurethane (PU) 261</p> <p>11.3.1.5 Others 262</p> <p>11.3.2 Printing Papers 262</p> <p>11.3.3 Tattoo Papers 265</p> <p>11.3.4 Fiber Textiles 265</p> <p>11.3.5 Others 268</p> <p>11.4 Application 268</p> <p>11.4.1 Wearable Sensors/Biosensors 269</p> <p>11.4.2 Noninvasive Biofuel Cells 272</p> <p>11.4.3 Wearable Energy Storage Devices 275</p> <p>11.5 Prospects 281</p> <p>References 281</p> <p><b>12 Flexible and Wearable Electronics: from Lab to Fab </b><b>285<br /></b><i>Yuanyuan Bai, Xianqing Yang, Lianhui Li, Tie Li, and Ting Zhang</i></p> <p>12.1 Introduction 285</p> <p>12.2 Materials 286</p> <p>12.2.1 Substrates 286</p> <p>12.2.2 Functional Materials 286</p> <p>12.3 Printing Technologies 287</p> <p>12.3.1 Jet Printing 287</p> <p>12.3.1.1 Inkjet Printing 288</p> <p>12.3.1.2 Aerosol Jet Printing 288</p> <p>12.3.1.3 Electrohydrodynamic Jet (e-Jet) Printing 289</p> <p>12.3.2 Screen Printing 290</p> <p>12.3.3 Other Printing Techniques 291</p> <p>12.4 Flexible and Wearable Electronic Products 292</p> <p>12.4.1 Flexible Force Sensors 292</p> <p>12.4.2 Paper Battery 294</p> <p>12.4.3 Flexible Solar Cell 295</p> <p>12.4.4 Flexible Display 298</p> <p>12.5 Strategy Toward Smart Clothing 299</p> <p>12.6 Summary and Perspective 300</p> <p>References 300</p> <p><b>13 Materials and Processes for Stretchable and Wearable e-Textile Devices </b><b>305<br /></b><i>Binghao Wang and Antonio Facchetti</i></p> <p>13.1 Introduction 305</p> <p>13.2 Materials for e-Textiles 306</p> <p>13.2.1 Conducting Materials 306</p> <p>13.2.1.1 Metal Nanomaterials 306</p> <p>13.2.1.2 Carbon Nanomaterials 307</p> <p>13.2.1.3 Conducting Polymers 307</p> <p>13.2.2 Passive Textile Materials 308</p> <p>13.3 Device Applications 309</p> <p>13.3.1 Interconnects and Electrodes 309</p> <p>13.3.2 Strain Sensors 312</p> <p>13.3.3 Heaters 318</p> <p>13.3.4 Supercapacitors 319</p> <p>13.3.5 Energy Generators 322</p> <p>13.3.5.1 Thermoelectric Generators 322</p> <p>13.3.5.2 Triboelectric Generators 323</p> <p>13.4 Summary and Perspectives 325</p> <p>References 327</p> <p>Index 335</p>
<p><b>Gang Wang</b> is a Professor of materials science and engineering, at State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (DHU) from the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning. He is a joint-Ph.D between Donghua University and Georgia Institute of Technology. From 2016-2019, he worked as postdoc at Northwestern University (USA) with Prof. Tobin J Marks and Prof. Antonio Facchetti. His current research interests include multiscale alignment of flexible semiconductor materials, shear print strategy and instruments, andtThe applications of electro-fibers in soft robotics and smart fabrics. He has been published first author/corresponding in international peer-reviewed journals such as <i>PNAS</i>, <i>JACS</i>,<i>Nature Communications</i>, <i>Angewandte  Chemie</i>, <i>Advanced Energy Materials</i>, and <i>ACS Nano</i> in the past 3 years. He has 7 Chinese Invention Patents to his name, edited one book on soft electronics (Wiley-VCH), and served as organizer and invited speakers in ACS National Conferences amongst other things.</p> <p><b>Chengyi Hou</b> is Associate Professor of materials science and engineering, at State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University (DHU), under DHU Distinguished Young Professor Program. He received his Ph.D. degree at the department of materials science and engineering, Donghua University in 2014. He worked as a Marie Curie Postdoc at the department of chemistry, Technical University of Denmark from 2015 to 2017. He has engaged in the development of innovative methods and experimental approaches to address the key scientific and technical challenges related to scalable synthesis, processing, and assembly of nanomaterial-based soft electronics. He has explored the potential applications of a series of nanomaterials as electronic skin, micro-reactors, artificial muscle and three-dimensional biological scaffolds. He has published over 40 peer-review journal articles, with several publications on <i>Science Advances</i>, <i>Nature Communications</i>, <i>Advanced Materials</i>, <i>Advanced Functional Materials</i>, amongst others.</p> <p><b>Hongzhi Wang</b> is Professor of materials science and engineering, at State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University. He received his Ph.D in 1998 at Shanghai Institute of Ceramics, Chinese Academy of Sciences. From 2000 to 2005, he worked as postdocr at Micro-space Chemistry Lab., National Institute of Advanced Industrial Science and Technology (AIST) in Japan. In 2005, he joined Donghua University as a Full Professor . His main research topics are devoted to  macroscopic-ordered 2D materials, flexible materials for wearable applications,  functional fibers and textiles, and smart clothing. He has published over 200 papers in international  peer-review journals, and granted over 80 patents, two of which have been commercialized in functional fiber industry in China.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
CHF 236.00
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
CHF 62.00