Details

Functional Organic Liquids


Functional Organic Liquids


1. Aufl.

von: Takashi Nakanishi

CHF 164.00

Verlag: Wiley-VCH
Format: EPUB
Veröffentl.: 12.03.2019
ISBN/EAN: 9783527804955
Sprache: englisch
Anzahl Seiten: 296

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

The first book to comprehensively cover the burgeoning new class of soft materials known as functional organic liquids <br> <br> Functional organic liquids, a new concept in soft matter materials science, exhibit favorable properties compared to amorphous polymers and ionic liquids. They are composed of a functional core unit and a side chain, which induces fluidity even at room temperature. Due to their fluidity, functional organic liquids can adopt any shape and geometry and fulfill their function in stretchable and bendable devices for applications in photovoltaics, organic electronics, biomedicine, and biochemistry. <br> <br> Presented in five parts, this book starts with an overview of the design methods and properties of functional organic liquids. The next three parts focus on the applications of this exciting new class of soft materials in the fields of energy conversion, nanotechnology, and biomaterials. They study the liquids for energy conversion, those containing inorganic nanoclusters, and solvent-free soft biomaterials. Functional Organic Liquids concludes with a comparison in terms of properties and application potential between functional organic liquids and more conventional soft matter such as ionic liquids and liquid metals. <br> <br> -Examines the current state of science and technology for functional organic liquids <br> -Focuses on potential and already realized applications such as functional organic liquids for energy conversion <br> -Stimulates researchers to move forward on future development and applications <br> <br> Functional Organic Liquids is an excellent book for materials scientists, polymer chemists, organic chemists, physical chemists, surface chemists, and surface physicists. <br>
<p>Preface xi</p> <p><b>1 Room-Temperature Liquid Dyes </b><b>1<br /></b><i>Bhawani Narayan and Takashi Nakanishi</i></p> <p>1.1 Introduction 1</p> <p>1.2 Design Strategy: Alkyl Chain Engineering 2</p> <p>1.3 Alkylated π-Molecular Liquids 3</p> <p>1.3.1 Carbazoles 3</p> <p>1.3.2 Azobenzenes 5</p> <p>1.3.3 Naphthalenes 6</p> <p>1.3.4 Anthracenes 6</p> <p>1.3.5 Pyrenes 8</p> <p>1.3.6 π-Conjugated Oligomers 10</p> <p>1.3.6.1 Oligo-(p-phenylenevinylene)s (OPVs) 10</p> <p>1.3.6.2 Oligo-(p-phenyleneethylene)s (OPEs) 11</p> <p>1.3.6.3 Benzothiadiazoles (BTDs) 12</p> <p>1.3.7 Porphyrins 12</p> <p>1.3.8 Fullerenes 12</p> <p>1.4 Alkylsilane-Chain-Appended π-Molecular Liquids 13</p> <p>1.4.1 Triarylamines 14</p> <p>1.4.2 Phthalocyanines 15</p> <p>1.4.3 Oligofluorenes 15</p> <p>1.5 Analytical Tools for Functional Molecular Liquids 16</p> <p>1.5.1 Analytical Tools for Bulk Physical Properties 16</p> <p>1.5.1.1 Structural Analysis 16</p> <p>1.5.1.2 Microscopy Techniques 16</p> <p>1.5.1.3 Rheology 16</p> <p>1.5.1.4 Calorimetric Techniques 17</p> <p>1.5.2 Analytical Tools for Spectroscopic Properties 17</p> <p>1.5.2.1 UV–vis Analysis 17</p> <p>1.5.2.2 Fluorescence Measurements 17</p> <p>1.5.2.3 Fluorescence Lifetime Analysis 17</p> <p>1.5.2.4 FTIR Measurements 17</p> <p>1.6 Conclusion 18</p> <p>References 18</p> <p><b>2 Low-Melting Porphyrins and Their Photophysical Properties </b><b>21<br /></b><i>Agnieszka Nowak-Król and Daniel T. Gryko</i></p> <p>2.1 Introduction 21</p> <p>2.2 Liquid Porphyrins 22</p> <p>2.3 Low-Melting trans-A<sub>2</sub>B<sub>2</sub>-Arylethynyl Porphyrins 28</p> <p>2.4 Liquid Crystalline trans-A<sub>2</sub>B<sub>2</sub>-Arylethynyl Porphyrins 31</p> <p>2.5 Bis-porphyrins 31</p> <p>2.6 Low-Melting Corroles 34</p> <p>2.7 Summary and Outlook 34</p> <p>References 35</p> <p><b>3 Porous Liquids </b><b>39<br /></b><i>Stuart L. James and Ben Hutchings</i></p> <p>3.1 Introduction 39</p> <p>3.2 Porosity in Solids 40</p> <p>3.3 Porosity in Liquids 41</p> <p>3.4 Porous Liquids Reported in the Literature 43</p> <p>3.4.1 Type 1 43</p> <p>3.4.2 Type 2 46</p> <p>3.4.3 Type 3 48</p> <p>3.4.4 Other Types of Porous Liquids and Theoretical Studies 48</p> <p>3.5 Opportunities for Applications and Current Challenges 49</p> <p>3.6 Concluding Remarks 50</p> <p>References 50</p> <p><b>4 Cyclic Host Liquids for the Formation of Rotaxanes and Their Applications </b><b>53<br /></b><i>Tomoki Ogoshi, Takahiro Kakuta, and Tada-aki Yamagishi</i></p> <p>4.1 Introduction 53</p> <p>4.2 Liquid Pillar[n]arenes at Room Temperature 54</p> <p>4.2.1 Synthesis and Structure of Pillar[n]arenes 54</p> <p>4.2.2 Versatile Functionality of Pillar[n]arenes 55</p> <p>4.2.3 Molecular Design to Produce Liquid-State Macrocyclic Hosts 56</p> <p>4.2.3.1 Pillar[n]arenes 56</p> <p>4.2.3.2 Cyclodextrins 58</p> <p>4.2.3.3 Crown Ethers 60</p> <p>4.2.3.4 Calix[n]arenes and Cucurbit[n]urils 60</p> <p>4.3 Complexation of Guest Molecules by Pillar[5]arenes 61</p> <p>4.3.1 Host Properties of Pillar[5]arenes 61</p> <p>4.3.2 Complexation of Guest Molecules in Liquid Pillar[5]arenes 62</p> <p>4.4 High Yield Synthesis of [2]Rotaxane and Polyrotaxane Using Liquid Pillar[5]arenes as Solvents 63</p> <p>4.5 Conclusion and Remarks 70</p> <p>References 71</p> <p><b>5 Photochemically Reversible Liquefaction/Solidification of Sugar-Alcohol Derivatives </b><b>75<br /></b><i>Haruhisa Akiyama</i></p> <p>5.1 Introduction 75</p> <p>5.2 Mechanism of the Phase Transition Between Liquid and Solid State 76</p> <p>5.3 Effect of Molecular Structure 79</p> <p>5.3.1 Number of Azobenzene Units 79</p> <p>5.3.2 Alkyl Chain Length 80</p> <p>5.3.3 Mixed Arms 82</p> <p>5.3.4 Structure of Sugar Alcohol 83</p> <p>5.4 Summary 85</p> <p>Acknowledgments 85</p> <p>References 85</p> <p><b>6 Functional Organic Supercooled Liquids </b><b>87<br /></b><i>Kyeongwoon Chung, Da Seul Yang, and Jinsang Kim</i></p> <p>6.1 Organic Supercooled Liquids 87</p> <p>6.2 Stimuli-Responsive Organic Supercooled Liquids 88</p> <p>6.2.1 Shear-triggered Crystallization 88</p> <p>6.2.2 Scratch-Induced Crystallization of Trifluoromethylquinoline Derivatives 89</p> <p>6.2.3 Highly Sensitive Shear-Triggered Crystallization in Thermally Stable Organic Supercooled Liquid of a Diketopyrrolopyrrole Derivative 91</p> <p>6.3 Highly Emissive Supercooled Liquids 95</p> <p>6.4 Conclusion 97</p> <p>References 97</p> <p><b>7 Organic Liquids in Energy Systems </b><b>101<br /></b><i>Pengfei Duan, Nobuhiro Yanai, and Nobuo Kimizuka</i></p> <p>7.1 Introduction 101</p> <p>7.2 Photoresponsive π-Liquids for Molecular Solar Thermal Fuels 102</p> <p>7.3 Azobenzene-Containing Ionic Liquids and the Phase Crossover Approach 107</p> <p>7.4 Photon Upconversion and Condensed Molecular Systems 113</p> <p>7.5 TTA-UC Based on the Amorphous π-Liquid Systems 114</p> <p>7.6 Photon Upconversion Based on Bicontinuous Ionic Liquid Systems 118</p> <p>7.7 Conclusion and Outlook 121</p> <p>References 122</p> <p><b>8 Organic Light Emitting Diodes with Liquid Emitters </b><b>127<br /></b><i>Jean-Charles Ribierre, Jun Mizuno, Reiji Hattori, and Chihaya Adachi</i></p> <p>8.1 Introduction 127</p> <p>8.2 Organic Light-emitting Diodes with a Solvent-Free Liquid Organic Light-emitting Layer 129</p> <p>8.2.1 Basics of Conventional Solid-state OLEDs 129</p> <p>8.2.2 First Demonstration of a Fluidic OLED Based on a Liquid Carbazole Host 130</p> <p>8.2.3 Introduction of an Electrolyte to Improve the Liquid OLED Performance 132</p> <p>8.2.4 Liquid OLED Material Issues 134</p> <p>8.3 Microfluidic OLEDs 135</p> <p>8.3.1 Refreshable Liquid Electroluminescent Devices 135</p> <p>8.3.2 Fabrication of Microfluidic Organic Light-Emitting Devices 137</p> <p>8.3.3 Large-Area Flexible Microfluidic OLEDs 137</p> <p>8.3.4 Multicolor Microfluidic OLEDs 140</p> <p>8.3.5 Microfluidic White OLEDs 143</p> <p>8.4 Conclusions 147</p> <p>References 148</p> <p><b>9 Liquids Based on Nanocarbons and Inorganic Nanoparticles </b><b>151<br /></b><i>Avijit Ghosh and Takashi Nakanishi</i></p> <p>9.1 Liquid Nanocarbons 151</p> <p>9.1.1 Introduction 151</p> <p>9.1.2 General Synthetic Strategies 151</p> <p>9.1.3 Liquid Fullerenes 152</p> <p>9.1.4 Liquid-Like Carbon Nanotubes 154</p> <p>9.1.5 Fluidic Graphene/Graphene Oxide 156</p> <p>9.2 Liquids Based on Inorganic Nanoparticles 158</p> <p>9.2.1 Background 158</p> <p>9.2.2 Liquid-Like Silica Nanoparticles 159</p> <p>9.2.3 Functional Colloidal Fluids 160</p> <p>9.2.4 Fluidic Functional Quantum Dots 161</p> <p>9.3 Conclusions 162</p> <p>References 164</p> <p><b>10 Solvent-Free Nanofluids and Reactive Nanofluids </b><b>169<br /></b><i>John Texter</i></p> <p>10.1 Introduction 169</p> <p>10.1.1 Solvent-Free Nanofluids 170</p> <p>10.1.2 Simulation and Theoretical Modeling 180</p> <p>10.1.3 Reactive Solvent-Free Nanofluids 183</p> <p>10.2 Syntheses of Nanofluids 184</p> <p>10.2.1 Core–Corona–Cap Nanofluid 184</p> <p>10.2.2 Core-Free Corona–Cap Nanofluid 186</p> <p>10.2.3 Core–Corona Nanofluid 186</p> <p>10.3 UV Reactive Nanofluids 187</p> <p>10.3.1 Model Coatings andThermomechanical Characterization 187</p> <p>10.3.2 UV Protective Coatings 191</p> <p>10.4 Polyurethane and Polyurea Coupling of Nanofluids 191</p> <p>10.4.1 Air-Cured Polyurethane Coupling with Isothiocyanate Nanofluid 192</p> <p>10.4.2 Air-Cured TDI Coupling with Amino Nanofluid 195</p> <p>10.4.3 Polyurethane Shape-Memory Materials 196</p> <p>10.4.4 PDMS-Amino Nanofluids Coupling with HMDI 197</p> <p>10.4.5 Polyurethane Coupling with Hydroxyl Nanofluid 198</p> <p>10.5 Epoxy Coupling with Amino Nanofluid 198</p> <p>10.6 Using Nanofluids to Make Composites Tougher 199</p> <p>10.6.1 Nanosilica Polyacrylate Nanocomposites 199</p> <p>10.6.2 MWCNT Polyamide Nanocomposites 200</p> <p>10.6.3 MnSn(OH)<sub>6</sub> Thread Epoxy Nanocomposites 201</p> <p>10.6.4 Graphene Oxide Epoxy Nanocomposites 201</p> <p>10.7 Summary and Future Prospects 201</p> <p>Acknowledgments 203</p> <p>References 203</p> <p><b>11 Solvent-Free Liquids and Liquid Crystals from Biomacromolecules </b><b>211<br /></b><i>Kai Liu, Chao Ma, and Andreas Herrmann</i></p> <p>11.1 Introduction 211</p> <p>11.2 Solvent-Free Nucleic Acid Liquids 212</p> <p>11.2.1 Fabrication of Solvent-Free Nucleic Acid Liquids 212</p> <p>11.2.2 Electrical Applications Based on Solvent-Free Nucleic Acid Liquids 215</p> <p>11.3 Solvent-Free Protein Liquids 217</p> <p>11.3.1 Fabrication of Solvent-Free Protein Liquids 217</p> <p>11.3.2 Electrochemical Applications Based on Solvent-Free Protein Liquids 222</p> <p>11.3.3 Catalysis of Solvent-Free Enzyme Liquids 224</p> <p>11.4 Solvent-Free Virus Liquids 226</p> <p>11.5 Mechanism for the Formation of Solvent-Free Bioliquids 228</p> <p>11.6 Conclusions and Outlook 229</p> <p>References 230</p> <p><b>12 Ionic Liquids 235</b><br /><i>Hiroyuki Ohno</i></p> <p>12.1 What Is Ionic Liquid? 235</p> <p>12.2 Some Physicochemical Properties 236</p> <p>12.3 Preparation 238</p> <p>12.4 IL Derivatives 239</p> <p>12.4.1 Zwitterions 239</p> <p>12.4.2 Self-Assembled ILs 239</p> <p>12.4.3 Polymers 241</p> <p>12.5 IL/Water Functional Mixture 241</p> <p>12.6 Application 243</p> <p>12.6.1 Reaction Solvents 243</p> <p>12.6.2 Electrolyte Solution 243</p> <p>12.6.3 Biomass Treatment 244</p> <p>12.6.4 Solvents for Proteins and Biofuel Cell 246</p> <p>12.7 Summary 247</p> <p>Acknowledgments 247</p> <p>References 247</p> <p><b>13 Room-Temperature Liquid Metals as Functional Liquids 251</b><br /><i>Minyung Song and Michael D. Dickey</i></p> <p>13.1 Introduction: Room-temperature Liquid Metals 251</p> <p>13.1.1 Mercury 251</p> <p>13.1.2 Gallium-Based Alloys 252</p> <p>13.1.3 Oxide Skin on Ga Alloys 252</p> <p>13.2 Removal of Oxide Skin 252</p> <p>13.3 Patterning Techniques for Liquid Metals 253</p> <p>13.3.1 Lithography-enabled Processes 254</p> <p>13.3.2 Injection 255</p> <p>13.3.3 Subtractive 256</p> <p>13.3.4 Additive 256</p> <p>13.4 Controlling Interfacial Tension 257</p> <p>13.4.1 Surface Activity of the Oxide on Liquid Metal Droplets 258</p> <p>13.5 Applications of Liquid Metals 261</p> <p>13.6 Conclusions and Outlook 263</p> <p>References 263</p> <p>Index 273</p>
<p><b><i>Takashi Nakanishi, PhD,</i></b><i> is a group leader at the International Center for Materials Nanoarchitectonics (WPI-MANA) at the National Institute for Materials Science (NIMS), Japan. He obtained his PhD from Nagasaki University, Japan, and subsequently was postdoctoral researcher at Houston University, USA, and Oxford University, UK. Takashi Nakanishi was group leader at the Max Planck Institute of Colloids and Interfaces and researcher at the Japanese Science and Technology Agency before taking up his current position.</i>
<p><b>The first book to comprehensively cover the burgeoning new class of soft materials known as functional organic liquids</b> <p>Functional organic liquids, a new concept in soft matter materials science, exhibit favorable properties compared to amorphous polymers and ionic liquids. They are composed of a functional core unit and a side chain, which induces fluidity even at room temperature. Due to their fluidity, functional organic liquids can adopt any shape and geometry and fulfill their function in stretchable and bendable devices for applications in photovoltaics, organic electronics, biomedicine, and biochemistry. <p>Presented in five parts, this book starts with an overview of the design methods and properties of functional organic liquids. The next three parts focus on the applications of this exciting new class of soft materials in the fields of energy conversion, nanotechnology, and biomaterials. They study the liquids for energy conversion, those containing inorganic nanoclusters, and solvent-free soft biomaterials. <i>Functional Organic Liquids</i> concludes with a comparison in terms of properties and application potential between functional organic liquids and more conventional soft matter such as ionic liquids and liquid metals. <ul> <li>Examines the current state of science and technology for functional organic liquids</li> <li>Focuses on potential and already realized applications such as functional organic liquids for energy conversion</li> <li>Stimulates researchers to move forward on future development and applications</li> </ul> <p><i>Functional Organic Liquids</i> is an excellent book for materials scientists, polymer chemists, organic chemists, physical chemists, surface chemists, and surface physicists.

Diese Produkte könnten Sie auch interessieren: