Details

Materials for Carbon Capture


Materials for Carbon Capture


1. Aufl.

von: De-en Jiang, Shannon M. Mahurin, Sheng Dai

CHF 167.00

Verlag: Wiley
Format: EPUB
Veröffentl.: 04.12.2019
ISBN/EAN: 9781119091202
Sprache: englisch
Anzahl Seiten: 376

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>Covers a wide range of advanced materials and technologies for CO2 capture</b></p> <p>As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties.</p> <p>Edited by leading authorities in the field, <i>Materials for Carbon Capture</i> offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. </p> <ul> <li>A comprehensive overview and survey of the present status of materials and technologies for carbon capture</li> <li>Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture</li> <li>Allows the reader to better understand the challenges and opportunities in carbon capture</li> <li>Edited by leading experts working on materials and membranes for carbon separation and capture</li> </ul> <p><i>Materials for Carbon Capture</i> is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.</p>
<p>List of Contributors xi</p> <p>Preface xv</p> <p>Acknowledgments xvii</p> <p><b>1 Introduction </b><b>1<br /> </b><i>De-en Jiang, Shannon M. Mahurin and Sheng Dai</i></p> <p>References 3</p> <p><b>2 CO<sub>2 </sub>Capture and Separation of Metal–Organic Frameworks </b><b>5<br /> </b><i>Xueying Ge and Shengqian Ma</i></p> <p>2.1 Introduction 5</p> <p>2.1.1 CO<sub>2 </sub>Capture Process 7</p> <p>2.1.2 Introduction to MOFs for CO<sub>2 </sub>Capture and Separation 7</p> <p>2.2 Evaluation Theory 8</p> <p>2.2.1 Isosteric Heat of Adsorption (<b>Q<sub>st</sub></b>) 8</p> <p>2.2.1.1 The Virial Method 1 9</p> <p>2.2.1.2 The Virial Method 2 9</p> <p>2.2.1.3 The Langmuir–Freundlich Equation 9</p> <p>2.2.2 Ideal Adsorbed Solution Theory (IAST) 10</p> <p>2.3 CO<sub>2</sub> Capture Ability in MOFs 10</p> <p>2.3.1 Open Metal Site 10</p> <p>2.3.2 Pore Size 11</p> <p>2.3.3 Polar Functional Group 13</p> <p>2.3.4 Incorporation 14</p> <p>2.4 MOFs in CO<sub>2 </sub>Capture in Practice 14</p> <p>2.4.1 Single-Component CO<sub>2 </sub>Capture Capacity 14</p> <p>2.4.2 Binary CO<sub>2 </sub>Capture Capacity and Selectivity 16</p> <p>2.4.3 Other Related Gas-Selective Adsorption 19</p> <p>2.5 Membrane for CO<sub>2 </sub>Capture 19</p> <p>2.5.1 Pure MOF Membrane for CO<sub>2 </sub>Capture 20</p> <p>2.5.2 MOF-Based Mixed Matrix Membranes for CO<sub>2 </sub>Capture 20</p> <p>2.6 Conclusion and Perspectives 21</p> <p>Acknowledgments 21</p> <p>References 21</p> <p><b>3 Porous Carbon Materials </b><b>29<br /> </b><i>Xiang-Qian Zhang and An-Hui Lu</i></p> <p>3.1 Introduction 29</p> <p>3.2 Designed Synthesis of Polymer-Based Porous Carbons as CO<sub>2 </sub>Adsorbents 30</p> <p>3.2.1 Hard-Template Method 31</p> <p>3.2.1.1 Porous Carbons Replicated from Porous Silica 31</p> <p>3.2.1.2 Porous Carbons Replicated from Crystalline Microporous Materials 33</p> <p>3.2.1.3 Porous Carbons Replicated from Colloidal Crystals 35</p> <p>3.2.1.4 Porous Carbons Replicated from MgO Nanoparticles 36</p> <p>3.2.2 Soft-Template Method 38</p> <p>3.2.2.1 Carbon Monolith 38</p> <p>3.2.2.2 Carbon Films and Sheets 45</p> <p>3.2.2.3 Carbon Spheres 48</p> <p>3.2.3 Template-Free Synthesis 49</p> <p>3.3 Porous Carbons Derived from Ionic Liquids for CO<sub>2 </sub>Capture 53</p> <p>3.4 Porous Carbons Derived from Porous Organic Frameworks for CO<sub>2 </sub>Capture 56</p> <p>3.5 Porous Carbons Derived from Sustainable Resources for CO<sub>2 </sub>Capture 61</p> <p>3.5.1 Direct Pyrolysis and/or Activation 63</p> <p>3.5.2 Sol–Gel Process and Hydrothermal Carbonization Method 64</p> <p>3.6 Critical Design Principles of Porous Carbons for CO<sub>2 </sub>Capture 67</p> <p>3.6.1 Pore Structures 67</p> <p>3.6.2 Surface Chemistry 72</p> <p>3.6.2.1 Nitrogen-Containing Precursors 72</p> <p>3.6.2.2 High-Temperature Reaction and Transformation 76</p> <p>3.6.2.3 Oxygen-Containing or Sulfur-Containing Functional Groups 77</p> <p>3.6.3 Crystalline Degree of the Porous Carbon Framework 81</p> <p>3.6.4 Functional Integration and Reinforcement of Porous Carbon 83</p> <p>3.7 Summary and Perspective 88</p> <p>References 89</p> <p><b>4 Porous Aromatic Frameworks for Carbon Dioxide Capture </b><b>97<br /> </b><i>Teng Ben and Shilun Qiu</i></p> <p>4.1 Introduction 97</p> <p>4.2 Carbon Dioxide Capture of Porous Aromatic Frameworks 98</p> <p>4.3 Strategies for Improving CO<sub>2 </sub>Uptake in Porous Aromatic Frameworks 98</p> <p>4.3.1 Improving the Surface Area 98</p> <p>4.3.2 Heteroatom Doping 99</p> <p>4.3.3 Tailoring the Pore Size 102</p> <p>4.3.4 Post Modification 103</p> <p>4.4 Conclusion and Perspectives 114</p> <p>References 114</p> <p><b>5 Virtual Screening of Materials for Carbon Capture </b><b>117<br /> </b><i>Aman Jain, Ravichandar Babarao and Aaron W. Thornton</i></p> <p>5.1 Introduction 118</p> <p>5.2 Computational Methods 118</p> <p>5.2.1 Monte Carlo-Based Simulations 118</p> <p>5.2.2 MD Simulation 122</p> <p>5.2.3 Density Functional Theory 122</p> <p>5.2.4 Empirical, Phenomenological, and Fundamental Models 123</p> <p>5.2.4.1 Langmuir and Others 124</p> <p>5.2.4.2 Ideal Adsorbed Solution Theory (IAST) 124</p> <p>5.2.5 Materials Genome Initiative 126</p> <p>5.2.6 High-Throughput Screening 127</p> <p>5.3 Adsorbent-Based CO<sub>2 </sub>Capture 129</p> <p>5.3.1 Direct Air Capture 130</p> <p>5.4 Membrane-Based CO<sub>2 </sub>Capture 131</p> <p>5.5 Candidate Materials 131</p> <p>5.5.1 Metal Organic Frameworks 131</p> <p>5.5.2 Zeolites 132</p> <p>5.5.3 Zeolitic Imidiazolate Frameworks 133</p> <p>5.5.4 Mesoporous Carbons 133</p> <p>5.5.5 Glassy and Rubbery Polymers 133</p> <p>5.6 Porous Aromatic Frameworks 134</p> <p>5.7 Covalent Organic Frameworks 135</p> <p>5.8 Criteria for Screening Candidate Materials 135</p> <p>5.8.1 CO<sub>2 </sub>Uptake 135</p> <p>5.8.2 Working Capacity 136</p> <p>5.8.3 Selectivity 137</p> <p>5.8.4 Diffusivity 137</p> <p>5.8.5 Regenerability 138</p> <p>5.8.6 Breakthrough Time in PSA 138</p> <p>5.8.7 Heat of Adsorption 138</p> <p>5.9<i> In-Silico</i> Insights 138</p> <p>5.9.1 Effect of Water Vapor 138</p> <p>5.9.2 Effect of Metal Exchange 141</p> <p>5.9.3 Effect of Ionic Exchange 142</p> <p>5.9.4 Effect of Framework Charges 142</p> <p>5.9.5 Effect of High-Density Open Metal Sites 144</p> <p>5.9.6 Effect of Slipping 145</p> <p>References 145</p> <p><b>6 Ultrathin Membranes for Gas Separation </b><b>153<br /> </b><i>Ziqi Tian, Song Wang, Sheng Dai and De-en Jiang</i></p> <p>6.1 Introduction 153</p> <p>6.2 Porous Graphene 155</p> <p>6.2.1 Proof of Concept 155</p> <p>6.2.2 Experimental Confirmation 156</p> <p>6.2.3 More Realistic Simulations to Obtain Permeance 158</p> <p>6.2.4 Further Simulations of Porous Graphene 160</p> <p>6.2.5 Effect of Pore Density on Gas Permeation 161</p> <p>6.3 Graphene-Derived 2D Membranes 163</p> <p>6.3.1 Poly-phenylene Membrane 163</p> <p>6.3.2 Graphyne and Graphdiyne Membranes 165</p> <p>6.3.3 Graphene Oxide Membranes 166</p> <p>6.3.4 2D Porous Organic Polymers 166</p> <p>6.4 Porous Carbon Nanotube 168</p> <p>6.5 Porous Porphyrins 172</p> <p>6.6 Flexible Control of Pore Size 174</p> <p>6.6.1 Ion-Gated Porous Graphene Membrane 174</p> <p>6.6.2 Bilayer Porous Graphene with Continuously Tunable Pore Size 176</p> <p>6.7 Summary and Outlook 178</p> <p>Acknowledgments 179</p> <p>References 179</p> <p><b>7 Polymeric Membranes </b><b>187<br /> </b><i>Jason E. Bara and W. Jeffrey Horne</i></p> <p>7.1 Introduction 187</p> <p>7.1.1 Overview of Post-Combustion CO<sub>2 </sub>Capture 187</p> <p>7.1.2 Polymer Membrane Fundamentals and Process Considerations 189</p> <p>7.2 Polymer Types 193</p> <p>7.2.1 Poly(Ethylene Glycol) 193</p> <p>7.2.2 Polyimides and Thermally Rearranged Polymers 195</p> <p>7.2.3 Polymers of Intrinsic Microporosity (PIMs) 196</p> <p>7.2.4 Poly(Ionic Liquids) 197</p> <p>7.2.5 Other Polymer Materials 198</p> <p>7.3 Facilitated Transport 199</p> <p>7.4 Polymer Membrane Contactors 202</p> <p>7.5 Summary and Perspectives 203</p> <p>References 204</p> <p><b>8 Carbon Membranes for CO<sub>2 </sub>Separation </b><b>215<br /> </b><i>Kuan Huang and Sheng Dai</i></p> <p>8.1 Introduction 215</p> <p>8.2 Theory 216</p> <p>8.3 Graphene Membranes 217</p> <p>8.4 Carbon Nanotube Membranes 221</p> <p>8.5 Carbon Molecular Sieve Membranes 222</p> <p>8.6 Conclusions and Outlook 230</p> <p>Acknowledgments 230</p> <p>References 231</p> <p><b>9 Composite Materials for Carbon Capture </b><b>237<br /> </b><i>Sunee Wongchitphimon, Siew Siang Lee, Chong Yang Chuah, Rong Wang and Tae-Hyun Bae</i></p> <p>9.1 Introduction 237</p> <p>9.1.1 Technologies for CO<sub>2 </sub>Capture 238</p> <p>9.1.2 Composite Materials for Adsorptive CO<sub>2 </sub>Capture 239</p> <p>9.1.3 Composite Materials for Membrane-Based CO<sub>2 </sub>Capture 240</p> <p>9.2 Fillers for Composite Materials 242</p> <p>9.2.1 Zeolites 242</p> <p>9.2.2 Metal–Organic Frameworks 243</p> <p>9.2.3 Other Particulate Materials – Carbon Molecular Sieves and Mesoporous Silica 247</p> <p>9.2.4 1-D Materials – Carbon Nanotubes 247</p> <p>9.2.5 2-D Materials – Layered Silicate and Graphene 248</p> <p>9.3 Non-Ideality of Filler/Polymer Interfaces 250</p> <p>9.3.1 Sieve-in-a-Cage 251</p> <p>9.3.2 Polymer Matrix Rigidification 253</p> <p>9.3.3 Plugged Filler Pores 253</p> <p>9.4 Composite Adsorbents 253</p> <p>9.5 Composite Membranes (Mixed-Matrix Membranes) 255</p> <p>9.6 Conclusion and Outlook 256</p> <p>References 260</p> <p><b>10 Poly(Amidoamine) Dendrimers for Carbon Capture </b><b>267<br /> </b><i>Ikuo Taniguchi</i></p> <p>10.1 Introduction 267</p> <p>10.2 Poly(Amidoamine) in CO<sub>2 </sub>Capture 269</p> <p>10.2.1 A Brief History 269</p> <p>10.2.2 Immobilization of PAMAM Dendrimers 270</p> <p>10.2.2.1 Immobilization in Crosslinked Chitosan 270</p> <p>10.2.2.2 Immobilization in Crosslinked Poly(Vinyl Alcohol) 273</p> <p>10.2.2.3 Immobilization in Crosslinked PEG 275</p> <p>10.3 Factors to Determine CO<sub>2 </sub>Separation Properties 276</p> <p>10.3.1 Visualization of Phase-Separated Structure 276</p> <p>10.3.2 Effect of Humidity 280</p> <p>10.3.3 Effect of Phase-Separated Structure 281</p> <p>10.4 CO<sub>2</sub>-Selective Molecular Gate 284</p> <p>10.5 Enhancement of CO<sub>2 </sub>Separation Performance 286</p> <p>10.6 Conclusion and Perspectives 288</p> <p>Acknowledgments 291</p> <p>References 291</p> <p><b>11 Ionic Liquids for Chemisorption of CO<sub>2 </sub></b><b>297<br /> </b><i>Mingguang Pan and Congmin Wang</i></p> <p>11.1 Introduction 297</p> <p>11.2 PILs for Chemisorption of CO<sub>2 </sub>299</p> <p>11.3 Aprotic Ionic Liquids for Chemisorption of CO<sub>2 </sub>300</p> <p>11.3.1 N as the Absorption Site 300</p> <p>11.3.1.1 Amino-Containing Ionic Liquids 300</p> <p>11.3.1.2 Azolide Ionic Liquids 302</p> <p>11.3.2 O as the Absorption Site 303</p> <p>11.3.3 Both N, O as Absorption Sites 303</p> <p>11.3.4 C as the Absorption Site 306</p> <p>11.4 Metal Chelate ILs for Chemisorption of CO<sub>2 </sub>307</p> <p>11.5 IL-Based Mixtures for Chemisorption of CO<sub>2 </sub>307</p> <p>11.6 Supported ILs for Chemisorption of CO<sub>2 </sub>308</p> <p>11.7 Conclusion and Perspectives 309</p> <p>Acknowledgments 309</p> <p>References 310</p> <p><b>12 Ionic Liquid-Based Membranes 317</b><br /> <i>Chi-Linh Do-Thanh, Jennifer Schott, Sheng Dai and Shannon M. Mahurin</i></p> <p>12.1 Introduction 317</p> <p>12.1.1 Transport in Ionic Liquids 320</p> <p>12.1.2 Facilitated Transport 321</p> <p>12.2 Supported IL Membranes 323</p> <p>12.2.1 Microporous Supports and Nanoconfinement 327</p> <p>12.2.2 Hollow-Fiber Supports 328</p> <p>12.3 Polymerizable ILs 330</p> <p>12.4 Mixed-Matrix ILs 332</p> <p>12.5 Conclusion and Outlook 336</p> <p>References 336</p> <p>Index 347</p>
<p><b>DE-EN JIANG, P<small>H</small>D,</b> is an associate professor in the Department of Chemistry at the University of California, Riverside. He has over 15 years of experience in computer simulation of advanced materials for gas separations.</p> <p><b>SHANNON M. MAHURIN, P<small>H</small>D,</b> is a Staff Scientist in the Chemical Sciences Division at Oak Ridge National Laboratory in Tennessee. He is an expert in the characterization and testing of novel materials, such gas graphene membranes, for separations.</p> <p><b>SHENG DAI, P<small>H</small>D,</b> is a Corporate Fellow and Group Leader in the Chemical Sciences Division at Oak Ridge National Laboratory in Tennessee and Professor of Chemistry at the University of Tennessee. He has been working on materials synthesis and discovery for separations for over 20 years, winning the American Chemical Society National Award in Separations Science and Technology in 2019.</p>
<p><b>Covers a wide range of advanced materials and technologies for<sub> </sub>CO2 capture</b> <p>As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. <p>Edited by leading authorities in the field,??<i>Materials for Carbon Capture</i>??offers in-depth chapters covering: CO<sub>2</sub> Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO<sub>2</sub> Capture; Porous Aromatic Frameworks for CO<sub>2</sub> Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO<sub>2</sub> Separation; and Composite Materials for Carbon Capture. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture, Ionic Liquids for Chemisorption of CO<sub>2</sub> and Ionic Liquid-Based Membranes.?? <ul> <li>A comprehensive overview and survey of the present status of materials and technologies for carbon capture</li> <li>Covers materials synthesis, gas separations, membrane fabrication, and CO<sub>2</sub> removal to highlight recent progress in the materials and chemistry aspects of carbon capture</li> <li>Allows the reader to better understand the challenges and opportunities in carbon capture</li> <li>Edited by leading experts working on materials and membranes for carbon separation and capture</li> </ul> <p><i>Materials for Carbon Capture</i>??is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
CHF 236.00
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
CHF 62.00