Details

Metal-Air Batteries


Metal-Air Batteries

Fundamentals and Applications
1. Aufl.

von: Xin-bo Zhang

CHF 170.00

Verlag: Wiley-VCH
Format: PDF
Veröffentl.: 19.09.2018
ISBN/EAN: 9783527807635
Sprache: englisch
Anzahl Seiten: 432

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

A comprehensive overview of the research developments in the burgeoning field of metal-air batteries <br> <br> An innovation in battery science and technology is necessary to build better power sources for our modern lifestyle needs. One of the main fields being explored for the possible breakthrough is the development of metal-air batteries. Metal-Air Batteries: Fundamentals and Applications offers a systematic summary of the fundamentals of the technology and explores the most recent advances in the applications of metal-air batteries. Comprehensive in scope, the text explains the basics in electrochemical batteries and introduces various species of metal-air batteries. <br> <br> The author-a noted expert in the field-explores the development of metal-air batteries in the order of Li-air battery, sodium-air battery, zinc-air battery and Mg-O2 battery, with the focus on the Li-air battery. The text also addresses topics such as metallic anode, discharge products, parasitic reactions, electrocatalysts, mediator, and X-ray diffraction study in Li-air battery. Metal-Air Batteries provides a summary of future perspectives in the field of the metal-air batteries. This important resource: <br> <br> -Covers various species of metal-air batteries and their components as well as system designation <br> -Contains groundbreaking content that reviews recent advances in the field of metal-air batteries <br> -Focuses on the battery systems which have the greatest potential for renewable energy storage <br> <br> Written for electrochemists, physical chemists, materials scientists, professionals in the electrotechnical industry, engineers in power technology, Metal-Air Batteries offers a review of the fundamentals and the most recent developments in the area of metal-air batteries. <br>
<p>Preface xiii</p> <p><b>1 Introduction to Metal–Air Batteries: Theory and Basic Principles 1<br /></b><i>Zhiwen Chang and Xin-bo Zhang</i></p> <p>1.1 Li–O2 Battery 1</p> <p>1.2 Sodium–O2 Battery 5</p> <p>References 7</p> <p><b>2 Stabilization of Lithium-Metal Anode in Rechargeable Lithium–Air Batteries 11<br /></b><i>Bin Liu,Wu Xu, and Ji-Guang Zhang</i></p> <p>2.1 Introduction 11</p> <p>2.2 Recent Progresses in Li Metal Protection for Li–O2 Batteries 13</p> <p>2.2.1 Design of Composite Protective Layers 13</p> <p>2.2.2 New Insights on the Use of Electrolyte 18</p> <p>2.2.3 Functional Separators 25</p> <p>2.2.4 Solid-State Electrolytes 29</p> <p>2.2.5 Alternative Anodes 30</p> <p>2.3 Challenges and Perspectives 30</p> <p>Acknowledgment 32</p> <p>References 32</p> <p><b>3 Li–Air Batteries: Discharge Products 41<br /></b><i>Xuanxuan Bi, RongyueWang, and Jun Lu</i></p> <p>3.1 Introduction 41</p> <p>3.2 Discharge Products in Aprotic Li–O2 Batteries 43</p> <p>3.2.1 Peroxide-based Li–O2 Batteries 43</p> <p>3.2.1.1 Electrochemical Reactions 43</p> <p>3.2.1.2 Crystalline and Electronic Band Structure of Li2O2 44</p> <p>3.2.1.3 Reaction Mechanism and the Coexistence of Li2O2 and LiO2 47</p> <p>3.2.2 Superoxide-based Li–O2 Batteries 52</p> <p>3.2.3 Problems and Challenges in Aprotic Li–O2 Batteries 54</p> <p>3.2.3.1 Decomposition of the Electrolyte 54</p> <p>3.2.3.2 Degradation of the Carbon Cathode 55</p> <p>3.3 Discharge Products in Li–Air Batteries 56</p> <p>3.3.1 Challenges to Exchanging O2 to Air 56</p> <p>3.3.2 Effect ofWater on Discharge Products 56</p> <p>3.3.2.1 Effect of Small Amount ofWater 56</p> <p>3.3.2.2 Aqueous Li–O2 Batteries 57</p> <p>3.3.3 Effect of CO2 on Discharge Products 59</p> <p>3.3.4 Current Li–Air Batteries and Perspectives 60</p> <p>Acknowledgment 61</p> <p>References 61</p> <p><b>4 Electrolytes for Li–O2 Batteries 65<br /></b><i>Alex R. Neale, Peter Goodrich, Christopher Hardacre, and Johan Jacquemin</i></p> <p>4.1 General Li–O2 Battery Electrolyte Requirements and Considerations 65</p> <p>4.1.1 Electrolyte Salts 69</p> <p>4.1.2 Ethers and Glymes 73</p> <p>4.1.3 Dimethyl Sulfoxide (DMSO) and Sulfones 76</p> <p>4.1.4 Nitriles 78</p> <p>4.1.5 Amides 79</p> <p>4.1.6 Ionic Liquids 80</p> <p>4.1.7 Solid-State Electrolytes 86</p> <p>4.2 Future Outlook 87</p> <p>References 87</p> <p><b>5 Li–Oxygen Battery: Parasitic Reactions 95<br /></b><i>Xiahui Yao, Qi Dong, Qingmei Cheng, and DunweiWang</i></p> <p>5.1 The Desired and Parasitic Chemical Reactions for Li–Oxygen Batteries 95</p> <p>5.2 Parasitic Reactions of the Electrolyte 96</p> <p>5.2.1 Nucleophilic Attack 97</p> <p>5.2.2 Autoxidation Reaction 99</p> <p>5.2.3 Acid–Base Reaction 100</p> <p>5.2.4 Proton-mediated Parasitic Reaction 100</p> <p>5.2.5 Additional Parasitic Chemical Reactions of the Electrolyte: Reduction Reaction 102</p> <p>5.3 Parasitic Reactions at the Cathode 102</p> <p>5.3.1 The Corrosion of Carbon in the Discharge Process 104</p> <p>5.3.2 The Corrosion of Carbon in the Recharge Process 106</p> <p>5.3.3 Catalyst-induced Parasitic Chemical Reactions 106</p> <p>5.3.4 Alternative Cathode Materials and Corresponding Parasitic Chemistries 110</p> <p>5.3.5 Additives and Binders 111</p> <p>5.3.6 Contaminations 111</p> <p>5.4 Parasitic Reactions on the Anode 112</p> <p>5.4.1 Corrosion of the Li Metal 114</p> <p>5.4.2 SEI in the Oxygenated Atmosphere 114</p> <p>5.4.3 Alternative Anodes and Associated Parasitic Chemistries 115</p> <p>5.5 New Opportunities from the Parasitic Reactions 116</p> <p>5.6 Summary and Outlook 117</p> <p>References 118</p> <p><b>6 Li–Air Battery: Electrocatalysts 125<br /></b><i>Zhiwen Chang and Xin-bo Zhang</i></p> <p>6.1 Introduction 125</p> <p>6.2 Types of Electrocatalyst 126</p> <p>6.2.1 Carbonaceous Materials 126</p> <p>6.2.1.1 Commercial Carbon Powders 126</p> <p>6.2.1.2 Carbon Nanotubes (CNTs) 126</p> <p>6.2.1.3 Graphene 127</p> <p>6.2.1.4 Doped Carbonaceous Material 128</p> <p>6.2.2 Noble Metal and Metal Oxides 129</p> <p>6.2.3 Transition Metal Oxides 130</p> <p>6.2.3.1 Perovskite Catalyst 131</p> <p>6.2.3.2 Redox Mediator 133</p> <p>6.3 Research of Catalyst 135</p> <p>6.4 Reaction Mechanism 138</p> <p>6.5 Summary 141</p> <p>References 142</p> <p><b>7 Lithium–Air BatteryMediator 151<br /></b><i>Zhuojian Liang, Guangtao Cong, YuWang, and Yi-Chun Lu</i></p> <p>7.1 Redox Mediators in Lithium Batteries 151</p> <p>7.1.1 Redox Mediators in Li–Air Batteries 151</p> <p>7.1.2 Redox Mediators in Li-ion and Lithium-flow Batteries 153</p> <p>7.1.2.1 Overcharge Protection in Li-ion Batteries 153</p> <p>7.1.2.2 Redox Targeting Reactions in Lithium-flow Batteries 154</p> <p>7.2 Selection Criteria and Evaluation of Redox Mediators for Li–O2 Batteries 156</p> <p>7.2.1 Redox Potential 156</p> <p>7.2.2 Stability 157</p> <p>7.2.3 Reaction Kinetics and Mass Transport Properties 161</p> <p>7.2.4 Catalytic Shuttle vs Parasitic Shuttle 163</p> <p>7.3 Charge Mediators 166</p> <p>7.3.1 LiI (Lithium Iodide) 170</p> <p>7.3.2 LiBr (Lithium Bromide) 172</p> <p>7.3.3 Nitroxides: TEMPO (2,2,6,6-Tetramethylpiperidinyloxyl) and Others 176</p> <p>7.3.4 TTF (Tetrathiafulvalene) 180</p> <p>7.3.5 Tris[4-(diethylamino)phenyl]amine (TDPA) 182</p> <p>7.3.6 Comparison of the Reported Charge Mediators 183</p> <p>7.4 Discharge Mediator 186</p> <p>7.4.1 Iron Phthalocyanine (FePc) 190</p> <p>7.4.2 2,5-Di-tert-butyl-1,4-benzoquinone (DBBQ) 192</p> <p>7.5 Conclusion and Perspective 194</p> <p>References 195</p> <p><b>8 Spatiotemporal Operando X-ray Diffraction Study on Li–Air Battery 207<br /></b><i>Di-Jia Liu and Jiang-Lan Shui</i></p> <p>8.1 Microfocused X-ray Diffraction (μ-XRD) and Li–O2 Cell Experimental Setup 207</p> <p>8.2 Study on Anode: Limited Reversibility of Lithium in Rechargeable LAB 209</p> <p>8.3 Study on Separator: Impact of Precipitates to LAB Performance 217</p> <p>8.4 Study on Cathode: Spatiotemporal Growth of Li2O2 During Redox</p> <p>Reaction 222</p> <p>References 230</p> <p><b>9 Metal–Air Battery: In Situ Spectroelectrochemical Techniques 233<br /></b><i>IainM. Aldous, Laurence J. Hardwick, Richard J. Nichols, and J. Padmanabhan Vivek</i></p> <p>9.1 Raman Spectroscopy 233</p> <p>9.1.1 In Situ Raman Spectroscopy for Metal–O2 Batteries 233</p> <p>9.1.2 BackgroundTheory 233</p> <p>9.1.3 Practical Considerations 235</p> <p>9.1.3.1 Electrochemical Roughening 235</p> <p>9.1.3.2 Addressing Inhomogeneous SERS Enhancement 237</p> <p>9.1.4 In Situ Raman Setup 238</p> <p>9.1.5 Determination of Oxygen Reduction and Evolution Reaction MechanismsWithin Metal–O2 Batteries 239</p> <p>9.2 Infrared Spectroscopy 247</p> <p>9.2.1 Background 247</p> <p>9.2.2 IR Studies of Electrochemical Interfaces 247</p> <p>9.2.3 Infrared Spectroscopy for Metal–O2 Battery Studies 249</p> <p>9.3 UV/Visible Spectroscopic Studies 253</p> <p>9.3.1 UV/Vis Spectroscopy 254</p> <p>9.3.2 UV/Vis Spectroscopy for Metal–O2 Battery Studies 255</p> <p>9.4 Electron Spin Resonance 257</p> <p>9.4.1 Cell Setup 259</p> <p>9.4.2 Deployment of Electrochemical ESR in Battery Research 259</p> <p>9.5 Summary and Outlook 262</p> <p>References 262</p> <p><b>10 Zn–Air Batteries 265<br /></b><i>Tongwen Yu, Rui Cai, and Zhongwei Chen</i></p> <p>10.1 Introduction 265</p> <p>10.2 Zinc Electrode 266</p> <p>10.3 Electrolyte 268</p> <p>10.4 Separator 270</p> <p>10.5 Air Electrode 271</p> <p>10.5.1 Structure of Air Electrode 271</p> <p>10.5.2 Oxygen Reduction Reaction 271</p> <p>10.5.3 Oxygen Evolution Reaction 272</p> <p>10.5.4 Electrocatalyst 273</p> <p>10.5.4.1 Noble Metals and Alloys 274</p> <p>10.5.4.2 Transition Metal Oxides 275</p> <p>10.5.4.3 Inorganic–Organic Hybrid Materials 278</p> <p>10.5.4.4 Metal-free Materials 282</p> <p>10.6 Conclusions and Outlook 288</p> <p>References 288</p> <p><b>11 Experimental and Computational Investigation of Nonaqueous Mg/O2 Batteries 293<br /></b><i>Jeffrey G. Smith, Gülin Vardar, CharlesW. Monroe, and Donald J. Siegel</i></p> <p>11.1 Introduction 293</p> <p>11.2 Experimental Studies of Magnesium/Air Batteries and Electrolytes 295</p> <p>11.2.1 Ionic Liquids as Candidate Electrolytes for Mg/O2 Batteries 295</p> <p>11.2.2 Modified Grignard Electrolytes for Mg/O2 Batteries 299</p> <p>11.2.3 All-inorganic Electrolytes for Mg/O2 Batteries 303</p> <p>11.2.4 Electrochemical Impedance Spectroscopy 307</p> <p>11.3 Computational Studies of Mg/O2 Batteries 310</p> <p>11.3.1 Calculation of Thermodynamic Overpotentials 310</p> <p>11.3.2 Charge Transport in Mg/O2 Discharge Products 315</p> <p>11.4 Concluding Remarks 320</p> <p>References 321</p> <p><b>12 Novel Methodologies to Model Charge Transport in Metal–Air Batteries 331<br /></b><i>Nicolai RaskMathiesen,Marko Melander,Mikael Kuisma, Pablo García-Fernández, and JuanMaria García Lastra</i></p> <p>12.1 Introduction 331</p> <p>12.2 Modeling Electrochemical Systems with GPAW 333</p> <p>12.2.1 Density FunctionalTheory 333</p> <p>12.2.2 Conductivity from DFT Data 335</p> <p>12.2.3 The GPAWCode 337</p> <p>12.2.4 Charge Transfer Rates with Constrained DFT 338</p> <p>12.2.4.1 MarcusTheory of Charge Transfer 338</p> <p>12.2.4.2 Constrained DFT 339</p> <p>12.2.4.3 Polaronic Charge Transport at the Cathode 341</p> <p>12.2.5 Electrochemistry at Solid–Liquid Interfaces 342</p> <p>12.2.5.1 Modeling the Electrochemical Interface 342</p> <p>12.2.5.2 Implicit Solvation at the Electrochemical Interface 343</p> <p>12.2.5.3 Generalized Poisson–Boltzmann Equation for the Electric Double Layer 344</p> <p>12.2.5.4 Electrode PotentialWithin the Poisson–Boltzmann Model 345</p> <p>12.2.6 Calculations at Constant Electrode Potential 346</p> <p>12.2.6.1 The Need for a Constant Potential Presentation 346</p> <p>12.2.6.2 Grand Canonical Ensemble for Electrons 347</p> <p>12.2.6.3 Fictitious Charge Dynamics 349</p> <p>12.2.6.4 Model in Practice 350</p> <p>12.2.7 Conclusions 351</p> <p>12.3 Second Principles for MaterialModeling 351</p> <p>12.3.1 The Energy in SP-DFT 352</p> <p>12.3.2 The Lattice Term (E(0)) 353</p> <p>12.3.3 Electronic Degrees of Freedom 354</p> <p>12.3.4 Model Construction 357</p> <p>12.3.5 Perspectives on SP-DFT 358</p> <p>Acknowledgments 359</p> <p>References 359</p> <p><b>13 Flexible Metal–Air Batteries 367</b><i><br />Huisheng Peng, Yifan Xu, Jian Pan, Yang Zhao, LieWang, and Xiang Shi</i></p> <p>13.1 Introduction 367</p> <p>13.2 Flexible Electrolytes 368</p> <p>13.2.1 Aqueous Electrolytes 368</p> <p>13.2.1.1 PAA-based Gel Polymer Electrolyte 369</p> <p>13.2.1.2 PEO-based Gel Polymer Electrolyte 369</p> <p>13.2.1.3 PVA-based Gel Polymer Electrolyte 371</p> <p>13.2.2 Nonaqueous Electrolytes 373</p> <p>13.2.2.1 PEO-based Polymer Electrolyte 373</p> <p>13.2.2.2 PVDF-HFP-based Polymer Electrolyte 377</p> <p>13.2.2.3 Ionic Liquid Electrolyte 377</p> <p>13.3 Flexible Anodes 378</p> <p>13.4 Flexible Cathodes 381</p> <p>13.4.1 Modified Stainless Steel Mesh 381</p> <p>13.4.2 Modified Carbon Textile 382</p> <p>13.4.3 Carbon Nanotube 384</p> <p>13.4.4 Graphene-based Cathode 385</p> <p>13.4.5 Other Composite Electrode 386</p> <p>13.5 Prototype Devices 386</p> <p>13.5.1 Sandwich Structure 387</p> <p>13.5.2 Fiber Structure 390</p> <p>13.6 Summary 394</p> <p>References 394</p> <p><b>14 Perspectives on the Development of Metal–Air Batteries 397<br /></b><i>Zhiwen Chang and Xin-bo Zhang</i></p> <p>14.1 Li–O2 Battery 397</p> <p>14.1.1 Lithium Anode 397</p> <p>14.1.2 Electrolyte 398</p> <p>14.1.3 Cathode 398</p> <p>14.1.4 The Reaction Mechanisms 399</p> <p>14.1.5 The Development of Solid-state Li–O2 Battery 399</p> <p>14.1.6 The Development of Flexible Li–O2 Battery 400</p> <p>14.2 Na–O2 Battery 401</p> <p>14.3 Zn–air Battery 402</p> <p>References 403</p> <p>Index 407</p>
<p><b><i>Xin-bo Zhang, PhD,</i></b><i> is Professor in Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, China. His research interests mainly focus on functional inorganic materials for energy storage and conversion with fuel cells and batteries, especially lithium-air batteries.</i>
<p><b>A</b> <b>comprehensive overview of the research developments in the burgeoning field of metal-air batteries</b> <p>An innovation in battery science and technology is necessary to build better power sources for our modern lifestyle needs. One of the main fields being explored for the possible breakthrough is the development of metal-air batteries. <i>Metal-Air Batteries: Fundamentals and Applications</i> offers a systematic summary of the fundamentals of the technology and explores the most recent advances in the applications of metal-air batteries. Comprehensive in scope, the text explains the basics in electrochemical batteries and introduces various species of metal-air batteries. <p>The authors—noted experts in the field—explore the development of metal-air batteries in the order of Li-air battery, sodium-air battery, zinc-air battery and Mg-O<sub>2</sub> battery, with the focus on the Li-air battery. The text also addresses topics such as metallic anode, discharge products, parasitic reactions, electrocatalysts, mediator, and X-ray diffraction study in Li-air battery. <i>Metal-Air Batteries</i> provides a summary of future perspectives in the field of the metal-air batteries. This important resource: <ul> <li>Covers various species of metal-air batteries and their components as well as system designation</li> <li>Contains groundbreaking content that reviews recent advances in the field of metal-air batteries</li> <li>Focuses on the battery systems which have the greatest potential for renewable energy storage</li> </ul> <p>Written for electrochemists, physical chemists, materials scientists, professionals in the electrotechnical industry, engineers in power technology, <i>Metal-Air Batteries</i> offers a review of the fundamentals and the most recent developments in the area of metal-air batteries.

Diese Produkte könnten Sie auch interessieren:

N4-Macrocyclic Metal Complexes
N4-Macrocyclic Metal Complexes
von: J.H. Zagal, Fethi Bedioui, J.P. Dodelet
PDF ebook
CHF 236.00
Modern Aspects of Electrochemistry 39
Modern Aspects of Electrochemistry 39
von: Constantinos G. Vayenas, Ralph E. White
PDF ebook
CHF 118.00