Details

Molecular Plant Abiotic Stress


Molecular Plant Abiotic Stress

Biology and Biotechnology
1. Aufl.

von: Aryadeep Roychoudhury, Durgesh K. Tripathi

CHF 221.00

Verlag: Wiley
Format: PDF
Veröffentl.: 12.06.2019
ISBN/EAN: 9781119463689
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A close examination of current research on abiotic stresses in various plant species</b></p> <p>The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance.</p> <p><i>Molecular Plant Abiotic Stress: </i><i>Biology and Biotechnology </i>is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book:</p> <ul> <li>Covers a wide range of abiotic stresses in multiple plant species</li> <li>Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species</li> <li>Compiles the most recent research and up-to-date data on stress tolerance</li> <li>Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances</li> <li>Written and edited by prominent scientists and researchers from across the globe</li> </ul> <p><i>Molecular Plant Abiotic Stress: Biology and Biotechnology</i> is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.</p>
<p>List of Contributors xv</p> <p><b>1 Plant Tolerance to Environmental Stress: Translating Research from Lab to Land </b><b>1<br /></b><i>P. Suprasanna and S. B. Ghag</i></p> <p>1.1 Introduction 1</p> <p>1.2 Drought Tolerance 3</p> <p>1.3 Cold Tolerance 10</p> <p>1.4 Salinity Tolerance 12</p> <p>1.5 Need for More Translational Research 16</p> <p>1.6 Conclusion 17</p> <p>References 17</p> <p><b>2 Morphological and Anatomical Modifications of Plants for Environmental Stresses </b><b>29<br /></b><i>Chanda Bano, Nimisha Amist, and N. B. Singh</i></p> <p>2.1 Introduction 29</p> <p>2.2 Drought-induced Adaptations 32</p> <p>2.3 Cold-induced Adaptations 33</p> <p>2.4 High Temperature-induced Adaptations 34</p> <p>2.5 UV-B-induced Morphogenic Responses 35</p> <p>2.6 Heavy Metal-induced Adaptations 35</p> <p>2.7 Roles of Auxin, Ethylene, and ROS 36</p> <p>2.8 Conclusion 37</p> <p>References 38</p> <p><b>3 Stomatal Regulation as a Drought-tolerance Mechanism </b><b>45<br /></b><i>Shokoofeh Hajihashemi</i></p> <p>3.1 Introduction 45</p> <p>3.2 Stomatal Morphology 46</p> <p>3.3 Stomatal Movement Mechanism 47</p> <p>3.4 Drought Stress Sensing 48</p> <p>3.5 Drought Stress Signaling Pathways 48</p> <p>3.5.1 Hydraulic Signaling 49</p> <p>3.5.2 Chemical Signaling 49</p> <p>3.5.2.1 Plant Hormones 49</p> <p>3.5.3 Nonhormonal Molecules 52</p> <p>3.5.3.1 Role of CO<sub>2</sub> Molecule in Response to Drought Stress 52</p> <p>3.5.3.2 Role of Ca<sup>2+</sup> Molecules in Response to Drought Stress 53</p> <p>3.5.3.3 Protein Kinase Involved in Osmotic Stress Signaling Pathway 53</p> <p>3.5.3.4 Phospholipid Role in Signal Transduction in Response to Drought Stress 53</p> <p>3.6 Mechanisms of Plant Response to Stress 54</p> <p>3.7 Stomatal Density Variation in Response to Stress 56</p> <p>3.8 Conclusion 56</p> <p>References 57</p> <p><b>4 Antioxidative Machinery for Redox Homeostasis During Abiotic Stress </b><b>65<br /></b><i>Nimisha Amist, Chanda Bano, and N. B. Singh</i></p> <p>4.1 Introduction 65</p> <p>4.2 Reactive Oxygen Species 66</p> <p>4.2.1 Types of Reactive Oxygen Species 67</p> <p>4.2.1.1 Superoxide Radical (O<sub>2</sub><sup>⋅−</sup>) 67</p> <p>4.2.1.2 Singlet Oxygen (<sup>1</sup>O<sub>2</sub>) 68</p> <p>4.2.1.3 Hydrogen Peroxide (H<sub>2</sub>O<sub>2</sub>) 69</p> <p>4.2.1.4 Hydroxyl Radicals (OH<sup>⋅</sup>) 69</p> <p>4.2.2 Sites of ROS Generation 69</p> <p>4.2.2.1 Chloroplasts 70</p> <p>4.2.2.2 Peroxisomes 70</p> <p>4.2.2.3 Mitochondria 70</p> <p>4.2.3 ROS and Oxidative Damage to Biomolecules 71</p> <p>4.2.4 Role of ROS as Messengers 73</p> <p>4.3 Antioxidative Defense System in Plants 74</p> <p>4.3.1 Nonenzymatic Components of the Antioxidative Defense System 74</p> <p>4.3.1.1 Ascorbate 74</p> <p>4.3.1.2 Glutathione 75</p> <p>4.3.1.3 Tocopherols 75</p> <p>4.3.1.4 Carotenoids 76</p> <p>4.3.1.5 Phenolics 76</p> <p>4.3.2 Enzymatic Components 76</p> <p>4.3.2.1 Superoxide Dismutases 77</p> <p>4.3.2.2 Catalases 77</p> <p>4.3.2.3 Peroxidases 77</p> <p>4.3.2.4 Enzymes of the Ascorbate–Glutathione Cycle 78</p> <p>4.3.2.5 Monodehydroascorbate Reductase 79</p> <p>4.3.2.6 Dehydroascorbate Reductase 79</p> <p>4.3.2.7 Glutathione Reductase 79</p> <p>4.4 Redox Homeostasis in Plants 80</p> <p>4.5 Conclusion 81</p> <p>References 81</p> <p><b>5 Osmolytes and their Role in Abiotic Stress Tolerance in Plants </b><b>91<br /></b><i>Abhimanyu Jogawat</i></p> <p>5.1 Introduction 91</p> <p>5.2 Osmolyte Accumulation is a Universally Conserved Quick Response During Abiotic Stress 92</p> <p>5.3 Osmolytes Minimize Toxic Effects of Abiotic Stresses in Plants 93</p> <p>5.4 Stress Signaling Pathways Regulate Osmolyte Accumulation Under Abiotic Stress Conditions 94</p> <p>5.5 Metabolic Pathway Engineering of Osmolyte Biosynthesis Can Generate Improved Abiotic Stress Tolerance in Transgenic Crop Plants 95</p> <p>5.6 Conclusion and Future Perspectives 97</p> <p>Acknowledgements 97</p> <p>References 97</p> <p><b>6 Elicitor-mediated Amelioration of Abiotic Stress in Plants </b><b>105<br /></b><i>Nilanjan Chakraborty, Anik Sarkar, and Krishnendu Acharya</i></p> <p>6.1 Introduction 105</p> <p>6.2 Plant Hormones and Other Elicitor-mediated Abiotic Stress Tolerance in Plants 106</p> <p>6.3 PGPR-mediated Abiotic Stress Tolerance in Plants 109</p> <p>6.4 Signaling Role of Nitric Oxide in Abiotic Stresses 109</p> <p>6.5 Future Goals 114</p> <p>6.6 Conclusion 114</p> <p>References 115</p> <p><b>7 Role of Selenium in Plants Against Abiotic Stresses: Phenological and Molecular Aspects </b><b>123<br /></b><i>Aditya Banerjee and Aryadeep Roychoudhury</i></p> <p>7.1 Introduction 123</p> <p>7.2 Se Bioaccumulation and Metabolism in Plants 124</p> <p>7.3 Physiological Roles of Se 125</p> <p>7.3.1 Seas Plant Growth Promoters 125</p> <p>7.3.2 The Antioxidant Properties of Se 125</p> <p>7.4 Se Ameliorating Abiotic Stresses in Plants 126</p> <p>7.4.1 Se and Salt Stress 126</p> <p>7.4.2 Se and Drought Stress 127</p> <p>7.4.3 Se Counteracting Low-temperature Stress 128</p> <p>7.4.4 Se Ameliorating the Effects of UV-B Irradiation 128</p> <p>7.4.5 Se and Heavy Metal Stress 129</p> <p>7.5 Conclusion 129</p> <p>7.6 Future Perspectives 130</p> <p>References 130</p> <p><b>8 Polyamines Ameliorate Oxidative Stress by Regulating Antioxidant Systems and Interacting with Plant Growth Regulators </b><b>135<br /></b><i>Prabal Das, Aditya Banerjee, and Aryadeep Roychoudhury</i></p> <p>8.1 Introduction 135</p> <p>8.2 PAs as Cellular Antioxidants 136</p> <p>8.2.1 PAs Scavenge Reactive Oxygen Species 136</p> <p>8.2.2 The Co-operative Biosynthesis of PAs and Proline 137</p> <p>8.3 The Relationship Between PAs and Growth Regulators 137</p> <p>8.3.1 Brassinosteroids and PAs 137</p> <p>8.3.2 Ethylene and PAs 137</p> <p>8.3.3 Salicylic Acid and PAs 138</p> <p>8.3.4 Abscisic Acid and PAs 138</p> <p>8.4 Conclusion and Future Perspectives 139</p> <p>Acknowledgments 140</p> <p>References 140</p> <p><b>9 Abscisic Acid in Abiotic Stress-responsive Gene Expression </b><b>145<br /></b><i>Liliane Souza Conceição Tavares, Sávio Pinho dos Reis, Deyvid Novaes Marques, Eraldo José Madureira Tavares, Solange da Cunha Ferreira, Francinilson Meireles Coelho, and Cláudia Regina Batista de Souza</i></p> <p>9.1 Introduction 145</p> <p>9.2 Deep Evolutionary Roots 146</p> <p>9.3 ABA Chemical Structure, Biosynthesis, and Metabolism 151</p> <p>9.4 ABA Perception and Signaling 153</p> <p>9.5 ABA Regulation of Gene Expression 154</p> <p>9.5.1 <i>Cis</i>-regulatory Elements 155</p> <p>9.5.2 Transcription Factors Involved in the ABA-Mediated Abiotic Stress Response 156</p> <p>9.5.2.1 bZIP Family 157</p> <p>9.5.2.2 MYC and MYB 157</p> <p>9.5.2.3 NAC Family 159</p> <p>9.5.2.4 AP2/ERF Family 160</p> <p>9.5.2.5 Zinc Finger Family 162</p> <p>9.6 Post-transcriptional and Post-translational Control in Regulating ABA Response 164</p> <p>9.7 Epigenetic Regulation of ABA Response 167</p> <p>9.8 Conclusion 168</p> <p>References 169</p> <p><b>10 Abiotic StressManagement in Plants: Role of Ethylene </b><b>185<br /></b><i>Anket Sharma, Vinod Kumar, Gagan Preet Singh Sidhu, Rakesh Kumar, Sukhmeen Kaur Kohli, Poonam Yadav, Dhriti Kapoor, Aditi Shreeya Bali, Babar Shahzad, Kanika Khanna, Sandeep Kumar, Ashwani Kumar Thukral, and Renu Bhardwaj</i></p> <p>10.1 Introduction 185</p> <p>10.2 Ethylene: Abundance, Biosynthesis, Signaling, and Functions 186</p> <p>10.3 Abiotic Stress and Ethylene Biosynthesis 187</p> <p>10.4 Role of Ethylene in Photosynthesis Under Abiotic Stress 188</p> <p>10.5 Role of Ethylene on ROS and Antioxidative System Under Abiotic Stress 194</p> <p>10.6 Conclusion 196</p> <p>References 196</p> <p><b>11 Crosstalk Among Phytohormone Signaling Pathways During Abiotic Stress </b><b>209<br /></b><i>Abhimanyu Jogawat</i></p> <p>11.1 Introduction 209</p> <p>11.2 Phytohormone Crosstalk Phenomenon and its Necessity 210</p> <p>11.3 Various Phytohormonal Crosstalk Under Abiotic Stresses for Improving Stress Tolerance 210</p> <p>11.3.1 Crosstalk Between ABA and GA 210</p> <p>11.3.2 Crosstalk Between GA and ET 211</p> <p>11.3.3 Crosstalk Between ABA and ET 211</p> <p>11.3.4 Crosstalk Between ABA and Auxins 212</p> <p>11.3.5 Crosstalk Between ET and Auxins 213</p> <p>11.3.6 Crosstalk Between ABA and CTs 213</p> <p>11.4 Conclusion and Future Directions 213</p> <p>Acknowledgements 215</p> <p>References 215</p> <p><b>12 PlantMolecular Chaperones: Structural Organization and their Roles in Abiotic Stress Tolerance </b><b>221<br /></b><i>Roshan Kumar Singh, Varsha Gupta, and Manoj Prasad</i></p> <p>12.1 Introduction 221</p> <p>12.2 Classification of Plant HSPs 223</p> <p>12.2.1 Structure and Functions of sHSP Family 223</p> <p>12.2.2 Structure and Functions of HSP60 Family 224</p> <p>12.2.3 Structure and Functions of the HSP70 Family 225</p> <p>12.2.3.1 DnaJ/HSP40 227</p> <p>12.2.4 Structure and Functions of HSP90 Family 228</p> <p>12.2.5 Structure and Functions of HSP100 Family 229</p> <p>12.3 Regulation of HSP Expression in Plants 230</p> <p>12.4 Crosstalk Between HSP Networks to Provide Tolerance Against Abiotic Stress 231</p> <p>12.5 Genetic Engineering of HSPs for Abiotic Stress Tolerance in Plants 232</p> <p>12.6 Conclusion 234</p> <p>Acknowledgements 234</p> <p>References 234</p> <p><b>13 Chloride (Cl<sup>−</sup>) Uptake, Transport, and Regulation in Plant Salt Tolerance </b><b>241<br /></b><i>DB Shelke, GC Nikalje, TD Nikam, P Maheshwari, DL Punita, KRSS Rao, PB Kavi Kishor, and P. Suprasanna</i></p> <p>13.1 Introduction 241</p> <p>13.2 Sources of Cl<sup>−</sup> Ion Contamination 242</p> <p>13.3 Role of Cl<sup>−</sup> in Plant Growth and Development 243</p> <p>13.4 Cl<sup>−</sup> Toxicity 244</p> <p>13.5 Interaction of Soil Cl<sup>−</sup> with Plant Tissues 245</p> <p>13.5.1 Cl<sup>−</sup> Influx from Soil to Root 245</p> <p>13.5.2 Mechanism of Cl<sup>−</sup> Efflux at the Membrane Level 245</p> <p>13.5.3 Differential Accumulation of Cl<sup>−</sup> in Plants and Compartmentalization 246</p> <p>13.6 Electrophysiological Study of Cl<sup>−</sup> Anion Channels in Plants 247</p> <p>13.7 Channels and Transporters Participating in Cl<sup>−</sup> Homeostasis 248</p> <p>13.7.1 Slow Anion Channel and Associated Homologs 249</p> <p>13.7.2 QUAC1 and Aluminum-activated Malate Transporters 251</p> <p>13.7.3 Plant Chloride Channel Family Members 253</p> <p>13.7.4 Phylogenetic Tree and Tissue Localization of CLC Family Members 255</p> <p>13.7.5 Cation, Chloride Co-transporters 257</p> <p>13.7.6 ATP-binding Cassette Transporters and Chloride Conductance Regulatory Protein 258</p> <p>13.7.7 Nitrate Transporter1/Peptide Transporter Proteins 259</p> <p>13.7.8 Chloride Channel-mediated Anion Transport 259</p> <p>13.7.9 Possible Mechanisms of Cl− Influx, Efflux, Reduced Net Xylem Loading, and its Compartmentalization 260</p> <p>13.8 Conclusion and Future Perspectives 260</p> <p>References 261</p> <p><b>14 The Root Endomutualist <i>Piriformospora indica</i>: A Promising Bio-tool for Improving Crops under Salinity Stress </b><b>269<br /></b><i>Abhimanyu Jogawat, Deepa Bisht, Nidhi Verma, Meenakshi Dua, and Atul Kumar Johri</i></p> <p>14.1 Introduction 269</p> <p>14.2 <i>P. indica</i>: An Extraordinary Tool for Salinity Stress Tolerance Improvement 269</p> <p>14.3 Utilization of <i>P. indica </i>for Improving and Understanding the Salinity Stress Tolerance of Host Plants 270</p> <p>14.4 <i>P. indica</i>-induced Biomodulation in Host Plant under Salinity Stress 270</p> <p>14.5 Activity of Antioxidant Enzymes and ROS in Host Plant During Interaction with <i>P. indica </i>272</p> <p>14.6 Role of Calcium Signaling and MAP Kinase Signaling Combating Salt Stress 272</p> <p>14.7 Effect of <i>P. indica </i>on Osmolyte Synthesis and Accumulation 273</p> <p>14.8 Salinity Stress Tolerance Mechanism in Axenically Cultivated and Root Colonized <i>P. indica </i>274</p> <p>14.9 Conclusion 277</p> <p>Acknowledgments 278</p> <p>Conflict of Interest 278</p> <p>References 278</p> <p><b>15 Root Endosymbiont-mediated Priming of Host Plants for Abiotic Stress Tolerance </b><b>283<br /></b><i>Abhimanyu Jogawat, Deepa Bisht, and Atul Kumar Johri</i></p> <p>15.1 Introduction 283</p> <p>15.2 Bacterial Symbionts-mediated Abiotic Stress Tolerance Priming of Host Plants 284</p> <p>15.3 AM Fungi-mediated Alleviation of Abiotic Stress Tolerance of Vascular Plants 286</p> <p>15.4 Other Beneficial Fungi and their Importance in Abiotic Stress Tolerance Priming of Plants 287</p> <p>15.4.1 <i>Piriformospora indica</i>: A Model System for Bio-priming of Host Plants Against Abiotic Stresses 288</p> <p>15.4.2 Fungal Endophytes, AM-like Fungi, and Other DSE-mediated Bio-priming ofHost Plants for Abiotic Stress Tolerance 289</p> <p>15.5 Implication of Transgenes from Symbiotic Microorganisms in the Era of Genetic Engineering and Omics 289</p> <p>15.6 Conclusion and Future Perspectives 290</p> <p>Acknowledgements 291</p> <p>References 291</p> <p><b>16 Insight into the Molecular Interaction Between Leguminous Plants and Rhizobia Under Abiotic Stress </b><b>301<br /></b><i>Sumanti Gupta and Sampa Das</i></p> <p>16.1 Introduction 301</p> <p>16.1.1 Why is Legume–<i>Rhizobium </i>Interaction Under the Scientific Scanner? 301</p> <p>16.2 Legume–<i>Rhizobium </i>Interaction Chemistry: A Brief Overview 302</p> <p>16.2.1 Nodule Structure and Formation:The Sequential Events 302</p> <p>16.2.2 Nod Factor Signaling: From Perception to Nodule Inception 304</p> <p>16.2.3 Reactive Oxygen Species:The Crucial Role of the Mobile Signal in Nodulation 305</p> <p>16.2.4 Phytohormones: Key Players on All Occasions 306</p> <p>16.2.5 Autoregulation of Nodulation: The Self Control fromWithin 306</p> <p>16.3 Role of Abiotic Stress Factors in Influencing Symbiotic Relations of Legumes 307</p> <p>16.3.1 How Do Abiotic Stress Factors Alter Rhizobial Behavior During Symbiotic Association? 307</p> <p>16.3.2 Abiotic Agents Modulate Symbiotic Signals of Host Legumes 308</p> <p>16.3.3 Abiotic Stress Agents as Regulators of Defense Signals of Symbiotic Hosts During Interaction with Other Pathogens 309</p> <p>16.4 Conclusion: The Lessons Unlearnt 309</p> <p>References 310</p> <p><b>17 Effect of Nanoparticles on Oxidative Damage and Antioxidant Defense Systemin Plants </b><b>315<br /></b><i>Savita Sharma, Vivek K. Singh, Anil Kumar, and Sharada Mallubhotla</i></p> <p>17.1 Introduction 315</p> <p>17.2 Engineered Nanoparticles in the Environment 317</p> <p>17.3 Nanoparticle Transformations 318</p> <p>17.4 Plant Response to Nanoparticle Stress 320</p> <p>17.5 Generation of Reactive Oxygen Species (ROS) 323</p> <p>17.6 Nanoparticle Induced Oxidative Stress 324</p> <p>17.7 Antioxidant Defense System in Plants 326</p> <p>17.8 Conclusion 327</p> <p>References 328</p> <p><b>18 Marker-assisted Selection for Abiotic Stress Tolerance in Crop Plants </b><b>335<br /></b><i>Saikat Gantait, Sutanu Sarkar, and Sandeep Kumar Verma</i></p> <p>18.1 Introduction 335</p> <p>18.2 Reaction of Plants to Abiotic Stress 336</p> <p>18.3 Basic Concept of Abiotic Stress Tolerance in Plants 337</p> <p>18.4 Genetics of Abiotic Stress Tolerance 338</p> <p>18.5 Fundamentals of Molecular Markers and Marker-assisted Selection 339</p> <p>18.5.1 Molecular Markers 339</p> <p>18.5.2 Marker-assisted Selection 341</p> <p>18.6 Marker-assisted Selection for Abiotic Stress Tolerance in Crop Plants 341</p> <p>18.6.1 Marker-assisted Selection for Heat Tolerance 342</p> <p>18.6.1.1 Wheat (<i>Triticum aestivum</i>) 342</p> <p>18.6.1.2 Cowpea (<i>Vigna unguiculata</i>) 343</p> <p>18.6.1.3 Oilseed <i>Brassica </i>343</p> <p>18.6.1.4 Grape (<i>Vitis species</i>) 343</p> <p>18.7 Marker-assisted Selection for Drought Tolerance 344</p> <p>18.7.1.1 Maize (<i>Zea mays</i>) 344</p> <p>18.7.1.2 Chickpea (<i>Cicer arietinum</i>) 345</p> <p>18.7.1.3 Oilseed <i>Brassica </i>346</p> <p>18.7.1.4 Coriander (<i>Coriandrum sativum</i>) 346</p> <p>18.7.2 Marker-assisted Selection for Salinity Tolerance 347</p> <p>18.7.2.1 Rice (<i>Oryza sativa</i>) 347</p> <p>18.7.2.2 Mungbean (<i>Vigna radiata</i>) 348</p> <p>18.7.2.3 Oilseed <i>Brassica </i>349</p> <p>18.7.2.4 Tomato (<i>Solanum lycopersicum</i>) 350</p> <p>18.7.3 Marker-assisted Selection for Low Temperature Tolerance 351</p> <p>18.7.3.1 Barley (<i>Hordeum vulgare</i>) 351</p> <p>18.7.3.2 Pea (<i>Pisum sativum</i>) 353</p> <p>18.7.3.3 Oilseed <i>Brassica </i>354</p> <p>18.7.3.4 Potato (<i>Solanum tuberosum</i>) 355</p> <p>18.8 Outlook 356</p> <p>References 356</p> <p><b>19 Transgenes: The Key to Understanding Abiotic Stress Tolerance in Rice </b><b>369<br /></b><i>Supratim Basu, Lymperopoulos Panagiotis, Joseph Msanne, and Roel Rabara</i></p> <p>19.1 Introduction 369</p> <p>19.2 Drought Effects in Rice Leaves 370</p> <p>19.3 Molecular Analysis of Drought Stress Response 370</p> <p>19.4 Omics Approach to Analysis of Drought Response 371</p> <p>19.4.1 Transcriptomics 371</p> <p>19.4.2 Metabolomics 372</p> <p>19.4.3 Epigenomics 373</p> <p>19.5 Plant Breeding Techniques to Improve Rice Tolerance 374</p> <p>19.6 Marker-assisted Selection 374</p> <p>19.7 Transgenic Approach: Present Status and Future Prospects 375</p> <p>19.8 Looking into the Future for Developing Drought-tolerant Transgenic Rice Plants 376</p> <p>19.9 Salinity Stress in Rice 376</p> <p>19.10 Candidate Genes for Salt Tolerance in Rice 378</p> <p>19.11 QTL Associated with Rice Tolerance to Salinity Stress 379</p> <p>19.12 The Saltol QTL 380</p> <p>19.13 Conclusion 381</p> <p>References 381</p> <p><b>20 Impact of Next-generation Sequencing in Elucidating the Role of microRNA Related to Multiple Abiotic Stresses </b><b>389<br /></b><i>Kavita Goswami, Anita Tripathi, Budhayash Gautam, and Neeti Sanan-Mishra</i></p> <p>20.1 Introduction 389</p> <p>20.2 NGS Platforms and their Applications 390</p> <p>20.2.1 NGS Platforms 390</p> <p>20.2.1.1 Roche 454 390</p> <p>20.2.1.2 ABI SoLid 391</p> <p>20.2.1.3 ION Torrent 392</p> <p>20.2.1.4 Illumina 393</p> <p>20.2.2 Applications of NGS 394</p> <p>20.2.2.1 Genomics 395</p> <p>20.2.2.2 Metagenomics 396</p> <p>20.2.2.3 Epigenomics 396</p> <p>20.2.2.4 Transcriptomics 397</p> <p>20.3 Understanding the Small RNA Family 398</p> <p>20.3.1 Small Interfering RNAs 398</p> <p>20.3.2 microRNA 402</p> <p>20.4 Criteria and Tools for Computational Classification of Small RNAs 402</p> <p>20.4.1 Pre-processing (Quality Filtering and Sequence Alignment) 403</p> <p>20.4.2 Identification and Prediction of miRNAs and siRNAs 403</p> <p>20.5 Role of NGS in Identification of Stress-regulated miRNA and their Targets 407</p> <p>20.5.1 miR156 408</p> <p>20.5.2 miR159 408</p> <p>20.5.3 miR160 409</p> <p>20.5.4 miR164 409</p> <p>20.5.5 miR166 409</p> <p>20.5.6 miR167 409</p> <p>20.5.7 miR168 410</p> <p>20.5.8 miR169 410</p> <p>20.5.9 miR172 410</p> <p>20.5.10 miR393 410</p> <p>20.5.11 miR396 411</p> <p>20.5.12 miR398 411</p> <p>20.6 Conclusion 411</p> <p>Acknowledgments 412</p> <p>References 412</p> <p><b>21 Understanding the Interaction of Molecular Factors During the Crosstalk Between Drought and Biotic Stresses in Plants </b><b>427<br /></b><i>Arnab Purohit, Shreeparna Ganguly, Rituparna Kundu Chaudhuri, and Dipankar Chakraborti</i></p> <p>21.1 Introduction 427</p> <p>21.2 Combined Stress Responses in Plants 428</p> <p>21.3 Combined Drought–Biotic Stresses in Plants 428</p> <p>21.3.1 Plant Responses Against Biotic Stress during Drought Stress 429</p> <p>21.3.2 Plant Responses Against Drought Stress during Biotic Stress 430</p> <p>21.4 Varietal Failure Against Multiple Stresses 430</p> <p>21.5 Transcriptome Studies of Multiple Stress Responses 431</p> <p>21.6 Signaling Pathways Induced by Drought–Biotic Stress Responses 432</p> <p>21.6.1 Reactive Oxygen Species 432</p> <p>21.6.2 Mitogen-activated Protein Kinase Cascades 433</p> <p>21.6.3 Transcription Factors 434</p> <p>21.6.4 Heat Shock Proteins and Heat Shock Factors 436</p> <p>21.6.5 Role of ABA Signaling during Crosstalk 437</p> <p>21.7 Conclusion 438</p> <p>Acknowledgments 439</p> <p>Conflict of Interest 439</p> <p>References 439</p> <p>Index 447</p>
<p><b>Dr. Aryadeep Roychoudhury</b> is Assistant Professor, Department of Biotechnology, St. Xavier's College (Autonomous), Kolkata, India. <p><b>Dr. Durgesh Kumar Tripathi</b> is Assistant Professor, Amity Institute of Organic Agriculture, Amity University, Noida, Uttar Pradesh, India.
<p><b>A close examination of current research on abiotic stresses in various plant species</b> <p>The unpredictable environmental stress conditions associated with climate change are significant challenges to global food security, crop productivity, and agricultural sustainability. Rapid population growth and diminishing resources necessitate the development of crops that can adapt to environmental extremities. Although significant advancements have been made in developing plants through improved crop breeding practices and genetic manipulation, further research is necessary to understand how genes and metabolites for stress tolerance are modulated, and how cross-talk and regulators can be tuned to achieve stress tolerance. <p><i>Molecular Plant Abiotic Stress: Biology and Biotechnology</i> is an extensive investigation of the various forms of abiotic stresses encountered in plants, and susceptibility or tolerance mechanisms found in different plant species. In-depth examination of morphological, anatomical, biochemical, molecular, and gene expression levels enables plant scientists to identify the different pathways and signaling cascades involved in stress response. This timely book: <ul> <li>Covers a wide range of abiotic stresses in multiple plant species</li> <li>Provides researchers and scientists with transgenic strategies to overcome stress tolerances in several plant species</li> <li>Compiles the most recent research and up-to-date data on stress tolerance</li> <li>Examines both selective breeding and genetic engineering approaches to improving plant stress tolerances</li> <li>Written and edited by prominent scientists and researchers from across the globe</li> </ul> <p><i>Molecular Plant Abiotic Stress: Biology and Biotechnology</i> is a valuable source of information for students, academics, scientists, researchers, and industry professionals in fields including agriculture, botany, molecular biology, biochemistry and biotechnology, and plant physiology.

Diese Produkte könnten Sie auch interessieren:

The Air Spora
The Air Spora
von: Maureen E. Lacey, Jonathan S. West
PDF ebook
CHF 236.00
Vegetables I
Vegetables I
von: Jaime Prohens-Tomás, Fernando Nuez
PDF ebook
CHF 330.50
Handbook of Poisonous and Injurious Plants
Handbook of Poisonous and Injurious Plants
von: Lewis S. Nelson, L.R. Goldfrank, Andrew Weil, Richard D. Shih, Michael J. Balick
PDF ebook
CHF 142.00