Details

Nanotechnology Research Methods for Food and Bioproducts


Nanotechnology Research Methods for Food and Bioproducts


1. Aufl.

von: Graciela Wild Padua, Qin Wang

CHF 154.00

Verlag: Wiley-Blackwell
Format: EPUB
Veröffentl.: 08.02.2012
ISBN/EAN: 9781118229361
Sprache: englisch
Anzahl Seiten: 264

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Food nanotechnology is an expanding field. This expansion is based on the advent of new technologies for nanostructure characterization, visualization, and construction. <i>Nanotechnology Research Methods for Food and Bioproducts</i> introduces the reader to a selection of the most widely used techniques in food and bioproducts nanotechnology. This book focuses on state-of-the-art equipment and contains a description of the essential tool kit of a nanotechnologist. Targeted at researchers and product development teams, this book serves as a quick reference and a guide in the selection of nanotechnology experimental research tools.
<i>Foreword</i> xi <p><i>Contributors</i> xiii</p> <p><b>1 Introduction 1<br /> </b><i>Graciela W. Padua</i></p> <p>References 3</p> <p><b>2 Material components for nanostructures 5<br /> </b><i>Graciela W. Padua and Panadda Nonthanum</i></p> <p>2.1 Introduction 5</p> <p>2.2 Self-assembly 6</p> <p>2.3 Proteins and peptides 8</p> <p>2.3.1 Amyloidogenic proteins 8</p> <p>2.3.2 Collagen 9</p> <p>2.3.3 Gelatin 9</p> <p>2.3.4 Caseins 10</p> <p>2.3.5 Wheat gluten 10</p> <p>2.3.6 Zein 10</p> <p>2.3.7 Eggshell membranes 10</p> <p>2.3.8 Bovine serum albumin 11</p> <p>2.3.9 Enzymes 11</p> <p>2.4 Carbohydrates 11</p> <p>2.4.1 Cyclodextrins 11</p> <p>2.4.2 Cellulose whiskers 12</p> <p>2.5 Protein–polysaccharides 13</p> <p>2.6 Liquid crystals 14</p> <p>2.7 Inorganic materials 14</p> <p>References 15</p> <p><b>3 Self-assembled nanostructures 19<br /> </b><i>Qin Wang and Boce Zhang</i></p> <p>3.1 Introduction 19</p> <p>3.2 Self-assembly 20</p> <p>3.2.1 Introduction 20</p> <p>3.2.2 Micelles 20</p> <p>3.2.3 Fibers 21</p> <p>3.2.4 Tubes 23</p> <p>3.3 Layer-by-layer assembly 24</p> <p>3.3.1 Introduction 24</p> <p>3.3.2 Nanofilms on planar surfaces from LbL 25</p> <p>3.3.3 Nanocoatings from LbL 27</p> <p>3.3.4 Hollow nanocapsules from LbL 28</p> <p>3.4 Nanoemulsions 29</p> <p>3.4.1 Introduction 29</p> <p>3.4.2 High-energy nanoemulsification methods 30</p> <p>3.4.3 Low-energy nanoemulsification methods 31</p> <p>3.4.4 Nanoparticles generated from different nanoemulsions and their applications 33</p> <p>References 34</p> <p><b>4 Nanocomposites 41<br /> </b><i>Graciela W. Padua, Panadda Nonthanum and Amit Arora</i></p> <p>4.1 Introduction 41</p> <p>4.2 Polymer nanocomposites 42</p> <p>4.3 Nanocomposite formation 43</p> <p>4.4 Structure characterization 44</p> <p>4.5 Biobased nanocomposites 45</p> <p>4.5.1 Starch nanocomposites 46</p> <p>4.5.2 Pectin nanocomposites 46</p> <p>4.5.3 Cellulose nanocomposites 47</p> <p>4.5.4 Polylactic acid nanocomposites 47</p> <p>4.5.5 Protein nanocomposites 48</p> <p>4.6 Conclusion 50</p> <p>References 50</p> <p><b>5 Nanotechnology-enabled delivery systems for food functionalization and fortification 55<br /> </b><i>Rashmi Tiwari and Paul Takhistov</i></p> <p>5.1 Introduction: functional foods 55</p> <p>5.2 Food matrix and food micro-structure 56</p> <p>5.3 Target compounds: nutraceuticals 58</p> <p>5.3.1 Solubility and bioavailability of nutraceuticals 60</p> <p>5.3.2 Interaction of nutraceuticals with food matrix 61</p> <p>5.4 Delivery systems 64</p> <p>5.4.1 Overcoming biological barriers 64</p> <p>5.4.2 Nano-scale delivery systems 65</p> <p>5.4.3 Types/design principles 67</p> <p>5.4.4 Modes of action 69</p> <p>5.5 Examples of nanoscale delivery systems for food functionalization 72</p> <p>5.5.1 Liposomes 72</p> <p>5.5.2 Nano-cochleates 74</p> <p>5.5.3 Hydrogels-based nanoparticles 75</p> <p>5.5.4 Micellar systems 75</p> <p>5.5.5 Dendrimers 77</p> <p>5.5.6 Polymeric nanoparticles 78</p> <p>5.5.7 Nanoemulsions 80</p> <p>5.5.8 Lipid nanoparticles 81</p> <p>5.5.9 Nanocrystalline particles 83</p> <p>5.6 Conclusions 85</p> <p>References 85</p> <p><b>6 Scanning electron microscopy 103<br /> </b><i>Yi Wang and Vania Petrova</i></p> <p>6.1 Background 103</p> <p>6.1.1 Introduction to the scanning electron microscope 103</p> <p>6.1.2 Why electrons? 104</p> <p>6.1.3 Electron–target interaction 104</p> <p>6.1.4 Secondary electrons (SEs) 105</p> <p>6.1.5 Backscattered electrons (BSEs) 106</p> <p>6.1.6 Characteristic X-rays 107</p> <p>6.1.7 Overview of the SEM 107</p> <p>6.1.8 Electron sources 108</p> <p>6.1.9 Lenses and apertures 109</p> <p>6.1.10 Electron beam scanning 109</p> <p>6.1.11 Lens aberrations 110</p> <p>6.1.12 Vacuum 111</p> <p>6.1.13 Conductive coatings 111</p> <p>6.1.14 Environmental SEMs (ESEMs) 111</p> <p>6.2 Applications 111</p> <p>6.2.1 Zein microstructures 112</p> <p>6.2.2 Controlled magnifications 115</p> <p>6.2.3 Nanoparticles 117</p> <p>6.3 Limitations 119</p> <p>6.3.1 Radiation damage 120</p> <p>6.3.2 Contamination 122</p> <p>6.3.3 Charging 124</p> <p>References 126</p> <p><b>7 Transmission electron microscopy 127<br /> </b><i>Changhui Lei</i></p> <p>7.1 Background 127</p> <p>7.2 Instrumentations and applications 128</p> <p>7.2.1 Interactions between incident beam and specimen 129</p> <p>7.2.2 Conventional TEM 130</p> <p>7.2.3 Scanning TEM 136</p> <p>7.2.4 Analytical electron microscopy 139</p> <p>7.3 Sample preparations 142</p> <p>7.4 Limitations 143</p> <p>References 143</p> <p><b>8 Dynamic light scattering 145<br /> </b><i>Leilei Yin</i></p> <p>8.1 The principle of dynamic light scattering 145</p> <p>8.2 Photon correlation spectroscopy 151</p> <p>8.3 DLS apparatus 152</p> <p>8.4 DLS data analysis 156</p> <p>8.4.1 Multiple-decay methods 158</p> <p>8.4.2 Regularization methods 158</p> <p>8.4.3 Maximum-entropy method 159</p> <p>8.4.4 Cumulant method 159</p> <p>References 160</p> <p><b>9 X-ray diffraction 163<br /> </b><i>Yi Wang and Phillip H. Geil</i></p> <p>9.1 Background 163</p> <p>9.1.1 Introduction 163</p> <p>9.1.2 Classical X-ray setup 165</p> <p>9.1.3 X-ray sources 165</p> <p>9.1.4 X-ray detectors 168</p> <p>9.1.5 Wide-angle X-ray scattering and small-angle X-ray scattering 169</p> <p>9.2 Applications 169</p> <p>9.2.1 Example: X-ray characterization of zein–fatty acid films 170</p> <p>9.2.2 Temperature-controlled WAXS 176</p> <p>References 179</p> <p><b>10 Quartz crystal microbalance with dissipation 181<br /> </b><i>Boce Zhang and Qin Wang</i></p> <p>10.1 Background and principles 181</p> <p>10.2 Instrumentation and data analysis 183</p> <p>10.2.1 Sensors 183</p> <p>10.2.2 Data analysis 184</p> <p>10.3 Applications 185</p> <p>10.4 Advantages 190</p> <p>References 192</p> <p><b>11 Focused ion beams 195<br /> </b><i>Yi Wang</i></p> <p>11.1 Background 195</p> <p>11.1.1 Introduction to the focused ion beam system 195</p> <p>11.1.2 Overview of the FIB 196</p> <p>11.1.3 Ion beam production 196</p> <p>11.1.4 Ion–target interaction 198</p> <p>11.1.5 Basic functions of the FIB system 199</p> <p>11.1.6 SEM and SIM 200</p> <p>11.1.7 SEM and FIB combined system 201</p> <p>11.1.8 3D nanotomography with application of real-time imaging during FIB milling 201</p> <p>11.1.9 3D nanostructure fabrication by FIB 202</p> <p>11.2 Applications 202</p> <p>11.2.1 Polymers 202</p> <p>11.2.2 Biological products 203</p> <p>11.2.3 Example: self-assembled protein structures 203</p> <p>11.3 Limitations 207</p> <p>References 214</p> <p><b>12 X-ray computerized microtomography 215<br /> </b><i>Leilei Yin</i></p> <p>12.1 Introduction 215</p> <p>12.2 X-ray generation 215</p> <p>12.3 X-ray images 217</p> <p>12.4 X-ray micro-CT systems 220</p> <p>12.5 Data reconstructions 226</p> <p>12.6 Artifacts in micro-CT images 228</p> <p>12.6.1 Ring artifacts 229</p> <p>12.6.2 Center errors 230</p> <p>12.6.3 Beam-hardening artifacts 230</p> <p>12.6.4 Phase-contrast artifacts 231</p> <p>12.7 A couple of issues in X-ray micro-CT practice 232</p> <p>12.7.1 The spatial resolution, and associated issues of contrast and field of view 232</p> <p>12.7.2 Localized imaging and sample-size reduction 232</p> <p>References 233</p> <p><i>Index</i> 235</p> <p><i>A color plate section falls between pages 194 and 195</i></p>
<b>Dr Graciela W. Padua</b>, Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois, USA <p><b>Dr Qin Wang</b>, Department of Nutrition & Food Science, University of Maryland, College Park, Maryland, USA</p>
Nano-scale sized particles are not new – they exist naturally. However, our ability to visualize, understand and control matter at the nanoscale is new. Recent recognition of the impact of nanoscale materials on the overall structure and functionality of foods and biological tissues is driving new interest in their study. Nanotechnology has high potential in food science and technology: major impacts are foreseen in nutrition, food quality, food packaging and food safety assurance. The rapid implementation of nanotechnology concepts in industry and academia creates the need for information on instruments and methods among researchers and product development teams. Also, the advent of new structures has led to regulatory re-examination of materials involved. The selection of appropriate characterization instruments and methods is critical to this endeavor. <p><i>Nanotechnology Research Methods for Foods and Bioproducts</i> describes the properties of food materials and biological components relevant to nanotechnology developments, explains the concept of self-assembly, and reviews the formation and applications of nanocomposites and nanocolloids. The book introduces the reader to a selection of the most widely used techniques in food and bioproducts nanotechnology. It is intended as a quick reference and a guide to the selection of research tools. The focus is on state-of-the- art equipment; thus, it contains a description of the tool kit of a nanotechnologist. Concise explanations for the technical basis of the methods being described are included and research opportunities are highlighted, together with potential pitfalls and limitations. Later chapters cover nanostructure characterization techniques including: Scanning Electron Microscopy, Transmission Electron Microscopy, Dynamic Light Scattering, X-ray Diffraction, QCM-D, Focused Ion Beam, and Micro-Computer Tomography.</p> <p>This book is aimed at researchers new to the field of nanotechnology. It is meant to inform students in formal and informal settings, new researchers and product development teams in the expanding field of food and bioproducts nanotechnology.</p>

Diese Produkte könnten Sie auch interessieren:

Agricultural Biodiversity and Biotechnology in Economic Development
Agricultural Biodiversity and Biotechnology in Economic Development
von: Joseph Cooper, Leslie Lipper, David Zilberman
PDF ebook
CHF 236.00
Policy Reforms and Agriculture Development in Central Asia
Policy Reforms and Agriculture Development in Central Asia
von: Sandjar Djalalov, Suresh Chandra Babu
PDF ebook
CHF 236.00
Regulating Agricultural Biotechnology
Regulating Agricultural Biotechnology
von: Richard E. Just, Julian M. Alston, David Zilberman
PDF ebook
CHF 236.00