Schrödinger, Erwin Was ist Leben?

PIPER

Mehr über unsere Autoren und Bücher:

www.piper.de

Übersetzung aus dem Englischen von L. Mazurcak

Einführung von Ernst Peter Fischer

ISBN 978-3-492-97443-1

Juli 2017

© Cambridge University Press, Cambridge 1944

Titel der englischen Originalausgabe:

»What is Life?«

Deutschsprachige Ausgabe:

© Piper Verlag GmbH, München 1987

Covergestaltung: semper smile, München

Covermotiv: Focus

Datenkonvertierung: abavo GmbH, Buchloe

Sämtliche Inhalte dieses E-Books sind urheberrechtlich geschützt. Der Käufer erwirbt lediglich eine Lizenz für den persönlichen Gebrauch auf eigenen Endgeräten.

Urheberrechtsverstöße schaden den Autoren und ihren Werken. Die Weiterverbreitung, Vervielfältigung oder öffentliche Wiedergabe ist ausdrücklich untersagt und kann zivil- und/oder strafrechtliche Folgen haben.

In diesem E-Book befinden sich Verlinkungen zu Webseiten Dritter. Wir weisen darauf hin, dass sich der Piper Verlag nicht die Inhalte Dritter zu eigen macht.

Ernst Peter Fischer

»Was ist Leben?« – mehr als vierzig Jahre später

Die moderne Biologie ist nicht das Werk von Biologen. Sie ließen sich in den vierziger Jahren das Heft ihrer Wissenschaft aus der Hand nehmen. Dies wird vor allem bei einem Blick auf 1943 deutlich, das Jahr, in dem Erwin Schrödinger in Dublin die Frage »Was ist Leben?« vom Standpunkt des Physikers aus diskutierte. Zur selben Zeit wurden in den Vereinigten Staaten zwei Experimente erfolgreich abgeschlossen, die heute als Beginn der Molekularbiologie gelten.

Der Mediziner Salvador Luria und der Physiker Max Delbrück untersuchten damals mikroskopische Partikel, die Bakterien angreifen und zerstören konnten. Ihnen war aufgefallen, daß nach einer gewissen Zeit der Vermehrung nicht mehr alle Bakterien diesen sogenannten Phagen zum Opfer fielen. Einige Zellen überlebten nun den Angriff – sie waren resistent geworden. Wie war es dazu gekommen? Hatten sich die Bakterien den Phagen gezielt angepaßt oder war ihnen eine zufällige Änderung des genetischen Materials (Mutation) sozusagen zu Hilfe gekommen?

Luria und Delbrück gelang 1943 der Nachweis, daß die Bakterien tatsächlich aufgrund einer spontanen Mutation resistent geworden waren (Luria und Delbrück, 1944). Diese Arbeit ermöglichte mit einem Schlag eine genetische Analyse von Bakterien; das Ergebnis bereitete den Weg für die Entwicklung der Molekularbiologie. Das neue Fach explodierte, als 1946 entdeckt wurde, daß Bakterien und Phagen auch sexuell aktiv sind, also genetisches Material untereinander austauschen und neu kombinieren. Ihren ersten Höhepunkt erreichte die moderne Genetik 1953, als die Struktur des Erbmaterials ermittelt werden konnte. James Watson (ein Schüler von Luria) und Francis Crick (ein Physiker) erkannten, daß Gene als Doppelhelix gebaut sind. Sie bilden eine Art molekularer Strickleiter, die sich als Doppelschraube emporwindet (Watson und Crick, 1953).

Die Grundlage zu diesem Erfolg war in dem zweiten entscheidenden Experiment von 1943 gelegt worden. Zur gleichen Zeit, als Schrödinger in Dublin ganz allgemein die Stabilität von Genen diskutierte und eher beiläufig die damals revolutionäre Idee eines genetischen Codes vorschlug, führten der Mediziner Oswald Avery und seine Mitarbeiter Untersuchungen an Bakterien durch, die Lungenentzündung verursachen können; dabei gelang ihnen der Nachweis, daß vererbbare Eigenschaften dieser Zellen an das Vorhandensein einer bestimmten Sorte von Molekülen gebunden sind. Die Wissenschaftler konnten deren chemische Identität ermitteln und so mitteilen, daß Gene aus DNS (Desoxyribonukleinsäure) bestehen (Avery et al., 1944). Genauer betrachtet, hatte Averys Gruppe nachgewiesen, daß eine vererbbare Eigenschaft der Bakterien durch solche Nukleinsäuren festgelegt wird. Erst acht Jahre später gelang nämlich der Nachweis, daß dies für alle derartigen Eigenschaften gilt (Hershey und Chase, 1952). Damit war der Weg zur Entdeckung der Doppelhelix frei – das Zeitalter der Molekularbiologie hatte begonnen.

Die Physiker und die Biologie

Es braucht nicht betont zu werden, daß Schrödinger über die beiden erwähnten Versuche von 1943 nicht informiert war, als er seine Frage stellte »Was ist Leben?«. Seine Abhandlung, die im Dezember 1944 veröffentlicht wurde, verlor damit nicht an Aktualität. Auch in den Neuauflagen nach 1948 ging Schrödinger zum Beispiel nicht auf die weiterführenden Arbeiten von Max Delbrück ein; er begnügte sich mit der Diskussion der Untersuchung, die Delbrück 1935 in Zusammenarbeit mit einem Genetiker und einem Physiker »Über die Natur der Genmutation und der Genstruktur« publiziert hatte (Timoféef-Ressovsky, Zimmer und Delbrück, 1935). Mit dem hier vorgestellten Material bot sich Schrödinger die Gelegenheit, grundsätzliche Fragen zu stellen. Die Fragen nämlich, ob Physik und Biologie miteinander verträglich sind und ob Leben aus den Gesetzen der Physik erklärt werden kann. Seine Fragen sind heute noch genauso schwierig zu beantworten wie damals.

Wir wollen an dieser Stelle versuchen, eine einfachere Frage zu beantworten. Warum legten die Physiker etwa von 1935 an ein so starkes Interesse für die Biologie – genauer gesagt: für die Genetik – an den Tag? Beide Wissenschaften hatten sich von Beginn des 20. Jahrhunderts an getrennt, aber in gewisser Weise parallel entwickelt, wie Schrödinger in seinen Vorlesungen ausführt. Der Entdeckung des Wirkungsquantums im Jahre 1900 durch Max Planck korrespondiert die Wiederentdeckung der Mendelschen Gesetze der Vererbung. Sie wurde durch das Studium von sprunghaft auftretenden Mutationen möglich, die an Quantenzustände erinnerten.

Eine Aufgabe der Physik in den folgenden Jahrzehnten bestand darin, die Atome und vor allem ihre Stabilität zu erklären. Diese Bemühungen führten 1925/26 zu einer neuen Theorie der Materie, deren zwei mathematische Formulierungen mit den Namen Werner Heisenberg (Matrixmechanik) und Erwin Schrödinger (Wellenmechanik) verbunden sind. So überzeugend die neue Mechanik die Stabilität der Atome erklärte, so umstritten waren ihre erkenntnistheoretischen Konsequenzen. Die Materie offenbarte eine duale Natur. Die Physiker konnten nicht mehr sagen, ob die Bausteine der Materie sich wie Teilchen verhielten oder ob sie sich als Wellen ausbreiteten. Und im Versuch konnten diese Eigenschaften nur durch experimentelle Anordnungen festgestellt (definiert) werden, die sich gegenseitig ausschlossen.

Um dieses neuartige erkenntnistheoretische Problem in ein Wort fassen zu können, schlug Niels Bohr 1927 sein Konzept der Komplementarität als »Lektion der Atome« vor (Fischer, 1987). Zusammen mit den Unbestimmtheitsrelationen von Heisenberg stellt Bohrs Idee die als »Kopenhagener Deutung« bekannt gewordene philosophische Interpretation der Quantenmechanik dar. Welle und Teilchen – so Bohr – sind einander komplementäre Erfahrungen, das heißt, beide können nicht zu einem anschaulichen Bild zusammengefügt werden, aber jede einzelne von ihnen liefert einen gleichwertigen Beitrag zur vollständigen Erklärung.

Bohr war von Anfang an überzeugt, mit dieser Idee einen universellen erkenntnistheoretischen Zusammenhang sichtbar gemacht zu haben, der auch für die Biologie Konsequenzen haben sollte. Wenn schon in der Physik der Beobachter (das Subjekt) durch Auswahl der experimentellen Einrichtung Einfluß auf das zu beobachtende Objekt nimmt, dann muß dies erst recht in der Biologie gelten, in der das Subjekt selbst mehr und mehr zum Objekt wird. Diese Ansicht trug Bohr zum ersten Mal 1932 öffentlich vor (Bohr, 1985). In seinem Vortrag »Licht und Leben« bezweifelte er, daß die Erscheinungen des Lebens auf Physik und Chemie reduzierbar sind. Bohr nahm an, daß Leben und Atomphysik in einem ähnlich komplementären Verhältnis zueinander stehen wie der Wellen- und Teilchenaspekt in der Quantenmechanik.

Bohr ermutigte die Physiker, sich mit den Fragen der Biologie zu beschäftigen. Er forderte sie auf, das »andere Gesetz der Physik« zu finden, von dem auch Schrödinger in seinen Vorlesungen sprach. (Schrödinger meinte damit allerdings nicht den Gedanken der Komplementarität, dem er sehr skeptisch gegenüberstand und über den er kein Wort verlor.)

Vor allem Max Delbrück zeigte sich von Bohrs Vorschlag beeindruckt, und er beschloß, die Herausforderung anzunehmen (Fischer, 1985). Als Einstieg griff er die Frage nach der Stabilität der Gene auf, die sich Mitte der dreißiger Jahre in der Biologie genauso stellte, wie es in der Physik – in Hinblick auf die Stabilität der Atome – zwanzig Jahre zuvor der Fall gewesen war. Würde die Lösung dieses Problems jenes »andere Gesetz« erkennen lassen?

Welche Situation fand Delbrück Mitte der dreißiger Jahre in der Genetik vor? Nach der Wiederentdeckung der Mendelschen Regeln um die Jahrhundertwende hatte sich die Wissenschaft der klassischen Genetik herausgebildet, die bis dahin sozusagen alles über die Fähigkeiten des Erbmaterials in Erfahrung gebracht hatte, aber nichts über die Natur der Gene selbst wußte. Auch im Mikroskop blieben die Gene unsichtbar, dem Auge zeigten sich nur Chromosomen, von denen man wußte, daß auf ihnen die Gene wie Perlen in einer Kette aufgereiht sein mußten. Woraus aber bestanden diese Gene und wie entfalteten sie ihre Wirkung?

Der Weg zur Erforschung ihrer molekularen Struktur wurde 1927 frei – im Jahre der Kopenhagener Deutung –, als Herrmann Muller entdeckte, daß Röntgenstrahlen bei Fliegen Mutationen induzieren können. Gene wurden damit als Erbanlagen im Inneren von Zellen erkannt, die von Strahlen getroffen werden konnten. Muller war sofort klar, daß die Genetik nur dann vorankommen kann, wenn Physiker und Chemiker mithelfen würden. Der klassische Genetiker allein stehe der Frage nach der Natur des Gens hilflos gegenüber (Carlson, 1981).

Anfang der dreißiger Jahre kam Muller nach Berlin, um zusammen mit dem russischen Genetiker N. W. Timoféef-Ressovsky eine detaillierte Analyse der Mutationshäufigkeit durch Strahleneinwirkung vorzunehmen. Timoféef seinerseits kannte Delbrück, der im Hause seiner Mutter in Grunewald private Diskussionsabende organisiert hatte, um Probleme zu besprechen, die für Physiker wie auch für Biologen von Interesse waren (Fischer, 1985). Aus den Gesprächen dieser Gruppe ging die von Schrödinger vorgestellte »Dreimännerarbeit« hervor (Timoféef-Ressovsky, Zimmer und Delbrück, 1935). Mit ihr wurde mit einem Schlag klar, daß Gene Moleküle waren. Der Kölner Genetiker Peter Starlinger hat die Bedeutung dieser Analyse in einem Vortrag einmal wie folgt beschrieben:

»In dieser Arbeit wurde klar dargelegt, daß das Gen – bis dahin eine abstrakte Einheit ohne Zusammenhang mit dem physikalischen Maßsystem – eine materielle Natur haben müsse und daß die Daten es nahelegten, jedes Gen als Makromolekül anzusehen. Das war, wenn man so will, eine wissenschaftliche Revolution …: Aus dem Zusammentreffen von ganz verschiedenen Wissensgebieten ergab sich etwas, das für den Physiker fast selbstverständlich, für den Genetiker dagegen überraschend und sicherlich nicht einmal auf Anhieb zwingend war.

Liest man diese Arbeit heute, so erscheint einem vieles außerordentlich modern. Es findet sich sogar der Satz ›Vielleicht bildet sogar das ganze Chromosom (selbstverständlich der genhaltige Teil) eine Einheit, einen großen Atomverband mit vielen einzelnen, weitgehend autonomen Untergruppen‹. So würde man es auch heute beschreiben. An anderer Stelle liest man, diese Vorstellungen ›führen zu einer bewußten oder unbewußten Kritik der Zellentheorie: Die als Lebenseinheit sich bisher so glänzend bewährende Zelle wird in letzte Lebenseinheiten, in Gene aufgelöst‹. Die Analyse und bewußte Manipulation von lebendigen Organismen auf der Ebene der Gene ist hier im Grunde vorweggenommen.

Wie manche bahnbrechende Arbeit, so wurde auch diese erst langsam in ihrer vollen Bedeutung gewürdigt, wenn auch übertrieben sein mag, wenn Delbrück selbst von einem ›Begräbnis erster Klasse‹ sprach. Ihre Wirkung hat diese Arbeit in vollem Umfang erst 10 Jahre später entfaltet, als Erwin Schrödinger sein Buch ›Was ist Leben?‹ in wesentlichen Teilen auf Delbrücks Modell des Gens gründete und damit einer Generation junger Physiker den Zugang zu diesem Zweig eröffnete.« (Fischer, 1985)

Entstehung und Wirkung des Buches

Delbrück hatte die Publikation dieser Arbeit in den »Nachrichten von der Gesellschaft für Wissenschaften zu Göttingen« als »Begräbnis erster Klasse« bezeichnet, weil diese Zeitschrift kaum gelesen wurde. Den Autoren wurden aber 1000 Sonderdrucke zur Verfügung gestellt, und eben darauf hatten Timoféef und Delbrück es abgesehen. Sie verschickten die Exemplare an Wissenschaftler in aller Welt, und eines von ihnen gelangte zu Beginn der vierziger Jahre in die Hände von Schrödinger, der seine österreichische Heimat 1938 hatte verlassen müssen und seit 1939 in Dublin lebte (Yoxen, 1979).

Erwin Schrödinger (1887–1961) stammte aus Wien und hatte auch dort Physik studiert. Nach dem Ersten Weltkrieg hielt er sich für einige Jahre in Deutschland auf, bevor er Ende 1921 auf einen Lehrstuhl an die Universität Zürich berufen wurde. Während der folgenden sechs Schweizer Jahre entstanden seine berühmten Arbeiten zur sogenannten Wellenmechanik, die seinen Namen zu dem meistgenannten in der Wissenschaft machten. Wie Max Born es einmal formuliert hat: »Wer von uns hat nicht die Worte Schrödinger-Gleichung oder Schrödinger-Funktion ungezählte Male hingeschrieben? Vermutlich werden die nächsten Generationen dasselbe tun und seinen Namen lebendig erhalten.« (Herrmann, 1963)

1927 berief die Universität Berlin Schrödinger auf den Lehrstuhl von Max Planck, und 1929 wurde er Mitglied der Preußischen Akademie der Wissenschaften. Schrödinger lehnte das nationalsozialistische Regime ab und verzichtete 1933 auf seine Professur. Im November siedelte er nach Oxford über, wo er wenige Tage später erfuhr, daß ihm (zusammen mit Paul Dirac) der Nobelpreis für Physik verliehen worden war. 1936 kehrte Schrödinger in seine Heimat zurück. Er nahm eine Berufung nach Graz an. Als es aber 1938 zum Anschluß Österreichs kam, wurde Schrödinger entlassen.

Aus dieser schwierigen Situation rettete ihn die Einladung, nach Dublin zu kommen. Hier hatte der irische Ministerpräsident Eamon de Valera, der zuvor Professor für Mathematik gewesen war, ein »Institute for Advanced Studies« gegründet. Schrödinger nahm sein Angebot, an diesem Institut zu arbeiten, dankbar an, und unter reichlich schwierigen Umständen gelangte er in die irische Hauptstadt, in der er siebzehn Jahre lang bleiben sollte.

Hier hatte er Gelegenheit, ungestört seine Theorien zu entwickeln, und in diesen Jahren verfaßte er mehrere philosophisch orientierte Aufsätze (Fischer, 1984). Schrödinger analysierte die Entwicklung der modernen Wissenschaft aus der griechischen Philosophie (»Die Natur und die Griechen«), und er untersuchte die Wandlungen des physikalischen Weltbildes. Vor allem aber versuchte er die Fragen nach dem »Was« zu beantworten: »Was ist ein Naturgesetz?«, »Was ist Materie?« und vor allem »Was ist Leben?«

Die Zeit, zu der seine Diskussion dieser letzten Frage auf dem Buchmarkt erschien, konnte nicht günstiger sein. Der Zweite Weltkrieg ging zu Ende, und viele Physiker hatten nach der Entwicklung der Atombombe das Interesse an ihrer Wissenschaft verloren. Sie suchten nun nach einer neuen Herausforderung, und genau die bot Schrödingers Buch. In den Worten von François Jacob:

»Einen der Väter der Quantentheorie Fragen zu hören: ›Was ist Leben?‹, und die Vererbung in Begriffen molekularer Strukturen, interatomischer Bindungen und thermodynamischer Stabilität zu beschreiben – das genügt, um den Enthusiasmus gewisser junger Physiker auf die Biologie zu lenken und ihn mit einer Legalität zu umgeben. Ihr Streben und ihr Interesse richtet sich auf ein einziges Problem: die physikalische Struktur der genetischen Information«. (Jacob, 1972)

Darüber hinaus hatte der durch Schrödingers Buch populär gewordene Delbrück 1945 gerade damit begonnen, die von ihm gemeinsam mit Luria gemachten Entdeckungen einem breiteren Kreis von Wissenschaftlern zugänglich zu machen, um den Schwung nicht zu verlieren, den die genetische Forschung mit Phagen und Bakterien inzwischen bekommen hatte. Delbrücks Laboratorium wurde so zum Treffpunkt der sogenannten Phagengruppe, die am Anfang der Molekularbiologie steht (Fischer, 1985).

Schrödingers Überlegungen übten in einem Fall auch einen ganz direkten Einfluß aus. Am 19. Mai 1946 erschien auf der letzten Seite des »New York Time Book Review« eine Besprechung von »What is Life?«. Der Rezensent, Th. Maren, gibt darin seinen Eindruck wieder, daß der große Physiker der Frage nach der Natur des Gens höchste Bedeutung beimesse. Es komme in der zukünftigen Biologie vor allem darauf an, diese Substanz begreifbar zu machen. Ein achtzehnjähriger Student, der diese Rezension gelesen hatte, war von der Lektüre des Buches selbst dann so beeindruckt, daß er schließlich nur noch ein Ziel vor Augen hatte. Er wollte wissen, was ein Gen ist. Sieben Jahre später hatte James Watson (gemeinsam mit Francis Crick) die Antwort gefunden. Der Stoff, aus dem die Gene sind, besteht aus einer Doppelhelix aus DNS (Watson und Crick, 1953).

Diese Entdeckung von 1953 zerstörte vorläufig die Hoffnung von Bohr und Delbrück, daß die Wunder der Vererbung – also die Stabilität der Gene und die Verläßlichkeit ihrer Mechanismen – nicht in Form klassischer Modelle verstanden werden konnten. Was bei den Atomen der Physik nicht möglich gewesen war, das war bei den Atomen der Biologie, den Genen, gelungen. Die Doppelhelix entlarvte das Geheimnis der Genverdopplung als einen raffiniert einfachen Trick. Die genetischen Mechanismen stellten sich zwar als äußerst komplex heraus, aber sie funktionierten einfach wie ein Kinderspiel. Kein Rückgriff auf tiefgründige Denkfiguren (Komplementarität) schien erforderlich zu sein, um das Rätsel des Lebens zu lösen. Zumindest nicht in der Genetik. Delbrück zog die Konsequenzen und wandte sich anderen biologischen Phänomenen zu. Er blieb seinen romantischen Vorstellungen treu, daß ein »anderes Gesetz der Physik« nach wie vor zu entdecken sei (Fischer, 1985).

Die Überzeugung der Biologen, daß sie genau wüßten, was ein Gen ist, ging allerdings in den siebziger Jahren wieder verloren. Damals zerfiel sozusagen den Molekulargenetikern das Molekül, zu dem sie das Gen erniedrigen wollten, in der Hand (Fischer, 1980). Übrig blieben einige Stücke, die erst nach mehreren Verarbeitungsschritten so zusammengesetzt werden, daß sie Informationen erhalten, die von der Zelle weiterverwendet werden können. Ein Gen ist nicht, ein Gen wird. Gene sind Moleküle, die in einer Zelle existieren können und bestimmte Informationen erhalten und weitergeben. Wir haben inzwischen gelernt, wie man diese Moleküle manipulieren und mit ihnen Geschäfte machen kann. Aber wir haben immer noch nicht verstanden, wie sie die vielfältigen Erscheinungen des Lebens ermöglichen.

Das Problem der Ordnung

Die Rolle, die Schrödingers Buch in der Geschichte der Molekularbiologie gespielt hat, konnte mit den obigen Bemerkungen nur skizziert werden. In den Arbeiten von R. C. Olby (1974) und E. J. Yoxen (1979) ist sie ausführlich beschrieben worden. Die Autoren betonen zu Recht, daß das Gen, auf das sich viele Berichte beziehen, für Schrödinger eigentlich nur eine Nebenrolle gespielt hat. Es war für ihn nur das Vehikel, um allgemein das Problem der Ordnung diskutieren zu können.

Man darf dies allerdings nicht so verstehen, daß Schrödinger in der Biologie die Vorstellung einer geordneten Determiniertheit der klassischen Physik wiederfinden wollte, die sein Fach aufgrund der Entwicklung der Quantentheorie hatte aufgeben müssen. Es ging ihm vielmehr um ein altes grundlegendes Problem der (statistischen) Physik, das im letzten Jahrhundert deutlich geworden war. Einen wesentlichen Anteil an seiner Entwicklung hatte der große österreichische Theoretiker Ludwig Boltzmann, in dessen Nachfolge sich Schrödinger sah. Boltzmann lehrte um die Jahrhundertwende Physik in Wien, und Schrödinger hatte sogar gehofft, bei Boltzmann Vorlesungen belegen zu können. Doch wurde dies dadurch unmöglich gemacht, daß Boltzmann 1906 seinem Leben ein Ende setzte, gerade in dem Jahr, in dem sich Schrödinger in Wien immatrikulierte.

Karl Popper hat einmal die Vermutung geäußert, daß der Grund für Boltzmanns Selbstmord etwas mit einem Problem der Physik zu tun hätte, das er nicht lösen konnte (Popper, 1979). Es ging dabei um den Zweiten Hauptsatz der Thermodynamik, der mit Hilfe einer Funktion namens »Entropie« beschrieben werden kann. Schrödinger erläutert in seinem Buch ausführlich, was hierunter zu verstehen ist. Wir können uns daher mit dem Hinweis begnügen, daß Entropie etwas über die fehlende Ordnung eines Systems aussagt. Der zweite Hauptsatz konstatiert, daß die Entropie immer zunimmt. Dies ist uns aus dem Alltag auch geläufig, schließlich nimmt in jedem physikalischen System, das sich selbst überlassen bleibt, das Durcheinander zu. Aus Ordnung wird spontan Unordnung. Bei Lebewesen hingegen scheint der zweite Hauptsatz nicht zu greifen. Ihnen gelingt es – vor allem hinsichtlich der Vererbung mit Hilfe der Gene – aus Ordnung wiederum Ordnung zu schaffen. Und damit nicht genug. Im Laufe der Evolution bringt die Natur höhere Lebewesen hervor, es gelingt ihr also sogar, aus Ordnung noch mehr Ordnung entstehen zu lassen. Schließt dies nun eine physikalische Erklärung des Lebens aus?

Die Konzepte »Entropie« und »Evolution« waren etwa zur gleichen Zeit (in der zweiten Hälfte des 19. Jahrhunderts) in dem jeweiligen Wissenschaftsbereich aufgetaucht. Der Physiker Boltzmann, der Darwins Erkenntnisse bezüglich der Evolution als wichtigste Entdeckung seiner Zeit feierte, sah hier schwierige (aber lösbare) Probleme für seine Wissenschaft voraus, und er wußte, daß sein Vorschlag, den Daseinskampf der Lebewesen als ein Ringen um Entropie zu bezeichnen, die durch den Energiefluß von der Sonne zur Erde verfügbar wird, nur die Oberfläche der Schwierigkeiten illustrierte (Boltzmann, 1979).